Who's up to the challenge? 8

Calculus Level 5

0 sin x e x d x = π A B e C \displaystyle\int _{ 0 }^{ \infty }{ \frac { \sin { \sqrt { x } } }{ { e }^{ x } } dx } =\frac { \sqrt [ A ]{ \pi } }{ B\sqrt [ C ]{ e } }

where A , B , C A,B,C are positive integers then find

A + B + C A+B+C


this is a part of Who's up to the challenge?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 19, 2016

Let the integral be I I , then we have:

I = 0 sin x e x d x By Maclaurin series = 0 e x n = 0 ( 1 ) n x n + 1 2 ( 2 n + 1 ) ! d x = n = 0 ( 1 ) n 0 e x x n + 1 2 d x ( 2 n + 1 ) ! = n = 0 ( 1 ) n Γ ( n + 3 2 ) ( 2 n + 1 ) ! = n = 0 ( 1 ) n ( 2 n + 1 ) ! ! π ( 2 n + 1 ) ! 2 n + 1 = π n = 0 ( 1 ) n ( 2 n + 1 ) ! ( 2 n + 1 ) ! 2 n + 1 2 n n ! = π n = 0 ( 1 ) n 2 2 n + 1 n ! = π 2 n = 0 ( 1 ) n n ! ( 1 4 ) n = π 2 e 1 4 = π 2 e 4 \begin{aligned} I & = \int_0^\infty \frac{\color{#3D99F6}{\sin \sqrt{x}}}{e^x} dx \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{By Maclaurin series}} \\ & = \int_0^\infty e^{-x} \color{#3D99F6}{\sum_{n=0}^\infty \frac{(-1)^n x^{n+\frac{1}{2}}}{(2n+1)!}} dx \\ & = \sum_{n=0}^\infty \frac{(-1)^n \int_0^\infty e^{-x} x^{n+\frac{1}{2}} dx}{(2n+1)!} \\ & = \sum_{n=0}^\infty \frac{(-1)^n \Gamma \left(n+\frac{3}{2} \right)}{(2n+1)!} \\ & = \sum_{n=0} ^\infty \frac{(-1)^n (2n+1)!! \sqrt{\pi}}{(2n+1)! 2^{n+1}} \\ & = \sqrt{\pi} \sum_{n=0} ^\infty \frac{(-1)^n (2n+1)!}{(2n+1)! 2^{n+1}2^n n!} \\ & = \sqrt{\pi} \sum_{n=0} ^\infty \frac{(-1)^n}{2^{2n+1}n!} \\ & = \frac{\sqrt{\pi}}{2} \sum_{n=0} ^\infty \frac{(-1)^n}{n!}\left(\frac{1}{4} \right)^n = \frac{\sqrt{\pi}}{2} e^{-\frac{1}{4}} = \frac{\sqrt{\pi}}{2\sqrt[4]{e}} \end{aligned}

A + B + C = 2 + 2 + 4 = 8 \Rightarrow A+B+C = 2+2+4 = \boxed{8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...