Who's Up To the Challenge?80

Calculus Level 5

Define I 1 = 0 1 cos ( x x 2 ) { 2019 x } d x I 2 = 0 1 cos ( x x 2 ) d x n = I 2 I 1 I 3 = 0 1 { 2019 x } n d x \begin{gathered} I_1=\displaystyle \int_{0}^{1}{\cos(x-x^2) \left\{ 2019x \right\}\ dx}\\ I_2=\displaystyle \int_{0}^{1}{\cos(x-x^2)\ dx} \\ n=\frac{I_2}{I_1}\\ I_3=\int_{0}^{1}{\left\{ 2019x\right\}^ndx} \end{gathered}

If I 3 I_3 can be expressed as A B \dfrac{A}{B} where A A and B B are coprime positive integers, find A + B A+B

Notation : { } \{\cdot \} is the fractional part function


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joseph Newton
Jan 7, 2019

I 1 = 0 1 2 cos ( x x 2 ) { 2019 x } d x + 1 2 1 cos ( x x 2 ) { 2019 x } d x = 0 1 2 cos ( x x 2 ) { 2019 x } d x 1 2 0 cos ( 1 u ( 1 u ) 2 ) { 2019 ( 1 u ) } d u by letting u = 1 x = 0 1 2 cos ( x x 2 ) { 2019 x } d x + 0 1 2 cos ( u u 2 ) { 2019 ( 1 u ) } d u = 0 1 2 cos ( x x 2 ) { 2019 x } d x + 0 1 2 cos ( x x 2 ) { 2019 ( 1 x ) } d x since u and x are dummy variables = 0 1 2 cos ( x x 2 ) ( { 2019 x } + { 2019 ( 1 x ) } ) d x \begin{aligned}I_1&=\int_0^{\frac12}\cos(x-x^2)\{2019x\}dx+\int_{\frac12}^1\cos(x-x^2)\{2019x\}dx\\ &=\int_0^{\frac12}\cos(x-x^2)\{2019x\}dx-\int_{\frac12}^0\cos(1-u-(1-u)^2)\{2019(1-u)\}du&\text{by letting }u=1-x\\ &=\int_0^{\frac12}\cos(x-x^2)\{2019x\}dx+\int_0^{\frac12}\cos(u-u^2)\{2019(1-u)\}du\\ &=\int_0^{\frac12}\cos(x-x^2)\{2019x\}dx+\int_0^{\frac12}\cos(x-x^2)\{2019(1-x)\}dx&\text{since }u\text{ and }x\text{ are dummy variables}\\ &=\int_0^{\frac12}\cos(x-x^2)\left(\{2019x\}+\{2019(1-x)\}\right)dx\end{aligned}

Now, the functions { 2019 x } \{2019x\} and { 2019 ( 1 x ) } \{2019(1-x)\} can be rewritten as 2019 x n 2019x-n and 2019 ( 1 x ) m 2019(1-x)-m where n n and m m are integers such that 0 2019 x n < 1 0\leq2019x-n<1 and 0 2019 ( 1 x ) m < 1 0\leq2019(1-x)-m<1 .

{ 2019 x } + { 2019 ( 1 x ) = 2019 x n + 2019 ( 1 x ) m = 2019 x n + 2019 2019 x m = 2019 n m \begin{aligned}\{2019x\}+\{2019(1-x)&=2019x-n+2019(1-x)-m\\ &=2019x-n+2019-2019x-m\\ &=2019-n-m\end{aligned}

We can see that { 2019 x } + { 2019 ( 1 x ) } \{2019x\}+\{2019(1-x)\} must always be an integer, and since 0 2019 x < 1 0\leq{2019x}<1 and 0 2019 ( 1 x ) < 1 0\leq{2019(1-x)}<1 this integer must be either 0 or 1. It can only be 0 if both { 2019 x } \{2019x\} and { 2019 ( 1 x ) } \{2019(1-x)\} equal 0, which if possible would only occur in infinitesimal locations which are negligible to the integral, and so { 2019 x } + { 2019 ( 1 x ) } = 1 \{2019x\}+\{2019(1-x)\}=1 .

I 1 = 0 1 2 cos ( x x 2 ) \therefore I_1=\int_0^{\frac12}\cos(x-x^2)

I 2 = 0 1 2 cos ( x x 2 ) d x + 1 2 1 cos ( x x 2 ) d x = 0 1 2 cos ( x x 2 ) d x 1 2 0 cos ( 1 u ( 1 u ) 2 ) d u by letting u = 1 x = 0 1 2 cos ( x x 2 ) d x + 0 1 2 cos ( u u 2 ) d u = 0 1 2 cos ( x x 2 ) d x + 0 1 2 cos ( x x 2 ) d x since u and x are dummy variables = 2 0 1 2 cos ( x x 2 ) d x = 2 I 1 n = 2 I 1 I 1 = 2 \begin{aligned}I_2&=\int_0^{\frac12}\cos(x-x^2)dx+\int_{\frac12}^1\cos(x-x^2)dx\\ &=\int_0^{\frac12}\cos(x-x^2)dx-\int_{\frac12}^0\cos(1-u-(1-u)^2)du&\text{by letting }u=1-x\\ &=\int_0^{\frac12}\cos(x-x^2)dx+\int_0^{\frac12}\cos(u-u^2)du\\ &=\int_0^{\frac12}\cos(x-x^2)dx+\int_0^{\frac12}\cos(x-x^2)dx&\text{since }u\text{ and }x\text{ are dummy variables}\\ &=2\int_0^{\frac12}\cos(x-x^2)dx\\ &=2I_1\\ \therefore n&=\frac{2I_1}{I_1}=2\end{aligned} I 3 = 0 1 { 2019 x } 2 d x \therefore I_3=\int_0^1\{2019x\}^2dx It is easy to see that the function { 2019 x } \{2019x\} equals 2019 x 2019x for 0 x < 1 2019 0\leq x<\frac1{2019} , and then repeats every 1 2019 \frac1{2019} units, repeating a total of 2019 times on the interval [ 0 , 1 ] [0,1] . Therefore we can write the integral as: I 3 = 2019 × 0 1 2019 ( 2019 x ) 2 d x = 2019 × [ 201 9 2 x 3 3 ] 0 1 2019 = 2019 × 201 9 2 1 3 × 201 9 3 = 1 3 \begin{aligned}I_3&=2019\times\int_0^{\frac1{2019}}(2019x)^2dx\\ &=2019\times\left[2019^2\frac{x^3}3\right]_0^{\frac1{2019}}\\ &=2019\times2019^2\frac1{3\times2019^3}\\ &=\frac13\end{aligned} So the answer is 1 + 3 = 4 1+3=\boxed{4}

We can obtain a more general result: For any integrable function on [ 0 , 1 ] [0,1] ,

0 1 f ( x x 2 ) { n x } d x = 1 2 0 1 f ( x x 2 ) d x \displaystyle \int_{0}^{1}{f(x-x^2)\left\{ nx \right\}dx}=\frac{1}{2}\int_{0}^{1}{f(x-x^2)dx}

where n n is a constant.

Hamza A - 2 years, 5 months ago

Log in to reply

Yup......that is what I did, after seeing the number 2019!!! XD

Aaghaz Mahajan - 2 years, 5 months ago

I think {2019x}+{2019(1-x)}=2018

taiki kosuge - 2 years, 4 months ago

Log in to reply

We are talking about the fractional part function, not the floor function.

Joseph Newton - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...