Wow. Trigonometry or Calculus?

Geometry Level 3

Evaluate x = 1 2018 sin 2 ( x π 2018 ) \displaystyle \sum_{x = 1}^{2018} \sin^2 \left(\dfrac{x \cdot \pi}{2018} \right) .


The answer is 1009.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rajen Kapur
Feb 24, 2017

Use identity, s i n 2 θ = 1 c o s 2 θ 2 sin^2\theta = \dfrac {1-cos2\theta}{2} . All cosines add up to zero.

can you elaborate more? I really don't get it. :(

Christian Daang - 4 years, 3 months ago
Christian Daang
Feb 24, 2017

x = 1 2018 ( sin 2 ( x π 2018 ) ) = x = 0 2018 ( sin 2 ( x π 2018 ) ) lim δ x 0 x = 0 2018 ( sin 2 ( x π 2018 ) δ x ) 0 2018 ( sin 2 ( x π 2018 ) ) 1009 \begin{aligned} \sum_{x = 1}^{2018} \left( \sin^2 \left(\cfrac{x \cdot \pi}{2018} \right) \right) = \sum_{x = 0}^{2018} \left( \sin^2 \left(\cfrac{x \cdot \pi}{2018} \right) \right) & \approx \lim_{\delta x \rightarrow 0} \sum_{x = 0}^{2018} \left( \sin^2 \left(\cfrac{x \cdot \pi}{2018} \right) \delta x \right) \\ & \approx \int_{0}^{2018} \left( \sin^2 \left(\cfrac{x \cdot \pi}{2018} \right) \right) \\ & \approx \boxed{1009} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...