Why 1 , 2 , 3 1,2,3 ?

Geometry Level 3

In a square A B C D ABCD , a point P P is selected such that A P = 1 AP = 1 , B P = 2 BP = 2 , and C P = 3 CP = 3 .

Find the measure of A P B \angle APB in degrees.

Bonus : Solve using geometry only.

105 135 150 120

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mr. India
Mar 29, 2019

Rotate the square through 90° around point B. Let P' be the image of P, A' that of A, and D' of D. Connect P and P'.

NOTE : APC and AP'A' aren't straight lines although they might look so.

In ΔBPP', B P = B P BP = BP' and P B P = 9 0 \angle P'BP=90^\circ . The triangle is also isosceles so that B P P = 4 5 \angle BPP' = 45^\circ . From the Pythagorean Theorem, P P 2 = 8. PP^2 = 8.

In ΔAPP', P P 2 + A P 2 = A P 2 ( 8 + 1 = 9 ) PP^2 + AP^2 = AP^2(8 + 1 = 9) . Therefore, by the converse of the Pythagorean Theorem, the triangle is right and P P A = 9 0 \angle P'PA = 90^\circ .

Summing up, A P B = B P P + P P A = 4 5 + 9 0 = 13 5 \angle APB = \angle BPP' + \angle P'PA = 45 ^ \circ+90 ^ \circ=135^\circ .

nice solution using transformation (also known as fagnano reflection)

nibedan mukherjee - 2 years, 2 months ago

Log in to reply

Thank you!

Oh didn't know that!

Mr. India - 2 years, 2 months ago

Let the side length of square A B C D ABCD be 2 a 2a and the center of the square be the origin of the x y xy -plane such that the coordinates of the vertices of the square be A ( a , a ) A(-a,a) , B ( a , a ) B(a,a) , C ( a , a ) C(a,-a) , and D ( a , a ) D(-a,-a) , and P ( x , y ) P(x,y) . By Pythagorean theorem :

{ A P : ( x + a ) 2 + ( y a ) 2 = 1 2 . . . ( 1 ) B P : ( x a ) 2 + ( y a ) 2 = 2 2 . . . ( 2 ) C P : ( x a ) 2 + ( y + a ) 2 = 3 2 . . . ( 3 ) \begin{cases} AP: & (x+a)^2 + (y-a)^2 = 1^2 & ...(1) \\ BP: & (x-a)^2 + (y-a)^2 = 2^2 & ...(2) \\ CP: & (x-a)^2 + (y+a)^2 = 3^2 & ...(3) \end{cases}

( 1 ) ( 2 ) : 4 a x = 3 x = 3 4 a \begin{aligned} (1)-(2): \quad 4ax & = - 3 & \implies x = - \frac 3{4a} \end{aligned}

( 3 ) ( 2 ) : 4 a y = 5 x = 5 4 a \begin{aligned} (3)-(2): \quad 4ay & = 5 & \implies x = \frac 5{4a} \end{aligned}

( 1 ) : ( 3 4 a + a ) 2 + ( 5 4 a a ) 2 = 1 2 a 2 5 + 17 8 a 2 = 0 16 a 4 40 a 2 + 17 = 0 a 2 = 5 ± 2 2 4 \begin{aligned} (1): \quad \left(-\frac 3{4a}+a\right)^2 + \left(\frac 5{4a}-a\right)^2 & = 1 \\ 2a^2 - 5 + \frac {17}{8a^2} & = 0 \\ 16a^4 - 40a^2 + 17 & = 0 \\ \implies a^2 & = \frac {5 \pm 2\sqrt 2}4 \end{aligned}

By cosine rule :

A B 2 = A P 2 + B P 2 2 A P × B P cos A P B Let A P B = θ 4 a 2 = 1 + 4 4 cos θ cos θ = 5 4 a 2 4 Note that a 2 = 5 ± 2 2 4 = 5 5 2 2 4 = 1 2 Since θ > 9 0 θ = 135 \begin{aligned} AB^2 & = AP^2 + BP^2 - 2AP\times BP \cos \color{#3D99F6} \angle APB & \small \color{#3D99F6} \text{Let }\angle APB = \theta \\ 4a^2 & = 1 + 4 - 4 \cos \theta \\ \cos \theta & = \frac {5-\color{#3D99F6}4a^2}4 & \small \color{#3D99F6} \text{Note that }a^2 = \frac {5 \pm 2\sqrt 2}4 \\ & = \frac {5-\color{#3D99F6}5 \mp 2\sqrt 2}4 \\ & = - \frac 1{\sqrt 2} & \small \color{#3D99F6} \text{Since } \theta > 90^\circ \\ \implies \theta & = \boxed{135}^\circ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...