Why are the sum of squares afraid of one cube?

Calculus Level 2

lim n 1 2 + 2 2 + 3 2 + . . . + n 2 n 3 \lim _{ n\rightarrow \infty }{ \frac { { 1 }^{ 2 }+2^{ 2 }+3^{ 2 }+...+n^{ 2 } }{ { n }^{ 3 } } } can be expressed in the form a b \frac { a }{ b } . Find a + b a+b


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Curtis Clement
Mar 24, 2015

Using 1 2 + 2 2 + 3 3 + . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \ 1^{2} +2^{2} +3^{3} +...+ n^{2} = \frac{n(n+1)(2n+1)}{6} : lim n 1 2 + 2 2 + 3 2 + . . . + n 2 n 3 = lim n n ( n + 1 ) ( 2 n + 1 ) 6 n 3 \lim_{n \rightarrow\infty } \frac{1^2 +2^2 +3^2 +...+ n^2 }{n^3} = \lim_{n \rightarrow\infty } \frac{n(n+1)(2n+1)}{6n^3} = lim n 2 n 2 + 3 n + 1 6 n 2 = \lim_{n \rightarrow\infty } \frac{2n^2 +3n+1}{6n^2} = 2 n 2 6 n 2 = 1 3 a + b = 4 = \frac{2n^2}{6n^2} = \frac{1}{3} \therefore\boxed{a+b = 4} Note that I got rid of the smaller powers of n {n} because they become insignificant compared to n 2 \ n^{2} as n {n} tends to infinity.

Good solution!

Joel Yip - 6 years, 2 months ago
Noel Lo
Mar 23, 2015

1 2 1^2 + 2 2 2^2 + 3 2 3^2 +....+ n 2 n^2 = n 6 \frac{n}{6} (n+1)(2n+1).

n 6 \frac{n}{6} (n+1)(2n+1)/ n 3 n^3 = 1 6 \frac{1}{6} (1)(1+ 1 n \frac{1}{n} (2+ 1 n \frac{1}{n} ). When n tends to infinity, both 1 n \frac{1}{n} and 2 n \frac{2}{n} tend to 0 so we have 2 6 \frac{2}{6} = 1 3 \frac{1}{3} as the limit. Now a+b = 1+3 = 4 \boxed{4}

Caleb Townsend
Mar 23, 2015

k = 1 n k 2 n 3 = n ( n + 1 ) ( 2 n + 1 ) 6 n 3 = 2 n 2 + 3 n + 1 6 n 2 lim n 2 n 2 + 3 n + 1 6 n 2 = \frac{\sum_{k=1}^{n} k^2}{n^3} = \frac{n(n+1)(2n+1)}{6n^3} \\ = \frac{2n^2 + 3n + 1}{6n^2} \\ \lim_{n\to\infty} \frac{2n^2 + 3n + 1}{6n^2} = \frac{\infty}{\infty} Apply L'Hôpital's rule twice: lim n 2 n 2 + 3 n + 1 6 n 2 = lim n 4 n + 3 12 n = lim n 4 12 = 1 3 1 + 3 = 4 \lim_{n\to\infty} \frac{2n^2 + 3n + 1}{6n^2} \\ = \lim_{n\to\infty} \frac{4n + 3}{12n} \\ = \lim_{n\to\infty} \frac{4}{12} \\ = \frac{1}{3} \\ 1+3=\boxed{4}

Mas Mus
Apr 14, 2015

lim n 1 2 + 2 2 + 3 2 + + n 2 n 3 = lim n 1 n k = 1 n ( k n ) 2 \lim_{n\rightarrow\infty}\frac{1^2+2^2+3^2+\ldots+n^2}{n^3}=\lim_{n\rightarrow\infty}\frac{1}{n}\displaystyle\sum_{k=1}^{n}\left(\frac{k}{n}\right)^2 = 0 1 x 2 d x = 1 3 =\displaystyle\int_{0}^{1}x^2\mathrm dx=\frac{1}{3} a + b = 4 \therefore\boxed{ a+b=4}

Hobart Pao
Mar 26, 2015

I posted this same problem before. This came from the Piskunov calculus book, I think.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...