Why Can't It Be π 6 \frac{\pi}{6} Instead? (Part 2!)

Geometry Level 3

cos π 7 cos 2 π 7 + cos 3 π 7 = ? \large \cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}} = ?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 21, 2016

X = cos π 7 cos 2 π 7 + cos 3 π 7 Note that cos ( π x ) = cos x = cos π 7 + cos 5 π 7 + cos 3 π 7 See Note: k = 0 n 1 cos ( 2 k + 1 ) π 2 n + 1 = 1 2 = 1 2 = 0.5 \begin{aligned} X & = \cos \frac \pi 7 {\color{#3D99F6}- \cos \frac {2\pi} 7} + \cos \frac {3\pi}7 & \small \color{#3D99F6} \text{Note that }\cos (\pi - x) = - \cos x \\ & = \cos \frac \pi 7 {\color{#3D99F6} +\cos \frac {5\pi} 7} + \cos \frac {3\pi}7 & \small \color{#3D99F6} \text{See Note: } \sum_{k=0}^{n-1} \cos \frac {(2k+1)\pi}{2n+1} = \frac 12 \\ & = \frac 12 = \boxed{0.5} \end{aligned}


Note:

k = 0 n 1 cos ( 2 k + 1 ) π 2 n + 1 = k = 0 n 1 { e ( 2 k + 1 ) π i 2 n + 1 } = { e π i 2 n + 1 k = 0 n 1 e 2 k π i 2 n + 1 } = { e π i 2 n + 1 × 1 e 2 n π i 2 n + 1 1 e 2 π i 2 n + 1 } = { e π i 2 n + 1 e π i ( 1 e π i 2 n + 1 ) ( 1 + e π i 2 n + 1 ) } = { e π i 2 n + 1 + 1 ( 1 e π i 2 n + 1 ) ( 1 + e π i 2 n + 1 ) } = { 1 1 e π i 2 n + 1 } = { 1 e π i 2 n + 1 ( 1 e π i 2 n + 1 ) ( 1 e π i 2 n + 1 ) } = { 1 e π i 2 n + 1 1 e π i 2 n + 1 e π i 2 n + 1 + 1 } = { 1 cos π 2 n + 1 + i sin π 2 n + 1 2 2 cos π 2 n + 1 } = 1 2 \begin{aligned} \sum_{k=0}^{n-1} \cos \frac {(2k+1)\pi}{2n+1} & = \sum_{k=0}^{n-1} \Re \left \{e^{\frac {(2k+1)\pi i}{2n+1}} \right \} \\ & = \Re \left \{ e^{\frac {\pi i}{2n+1}} \sum_{k=0}^{n-1} e^{\frac {2k\pi i}{2n+1}} \right \} \\ & = \Re \left \{ e^{\frac {\pi i}{2n+1}} \times \frac {1-e^{\frac {2n\pi i}{2n+1}}}{1-e^{\frac {2\pi i}{2n+1}}} \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}} -e^{\pi i}}{\left(1-e^{\frac {\pi i}{2n+1}}\right)\left(1+e^{\frac {\pi i}{2n+1}}\right)} \right \} \\ & = \Re \left \{ \frac {e^{\frac {\pi i}{2n+1}} +1}{\left(1-e^{\frac {\pi i}{2n+1}}\right)\left(1+e^{\frac {\pi i}{2n+1}}\right)} \right \} \\ & = \Re \left \{ \frac 1{1-e^{\frac {\pi i}{2n+1}}} \right \} \\ & = \Re \left \{\frac {1-e^{\frac {-\pi i}{2n+1}}}{\left(1-e^{\frac {\pi i}{2n+1}}\right)\left(1-e^{\frac {-\pi i}{2n+1}}\right)} \right \} \\ & = \Re \left \{\frac {1-e^{\frac {-\pi i}{2n+1}}}{1-e^{\frac {\pi i}{2n+1}} - e^{\frac {-\pi i}{2n+1}} + 1} \right \} \\ & = \Re \left \{\frac {1 - \cos \frac {\pi}{2n+1} + i\sin \frac {\pi}{2n+1} }{2-2\cos \frac {\pi}{2n+1}} \right \} \\ & = \frac 12 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...