Why do I love 2015 so much 1

Algebra Level 4

S = a = 1 2015 ( b = 1 2015 ( 1 ) a 1 2 b ) c = 1 2015 1 c \large{S = \dfrac{\displaystyle \sum^{2015}_{a=1} \left(\sum^{2015}_{b=1} \frac{(-1)^{a-1}}{2b} \right)}{\displaystyle \sum^{2015}_{c=1}\frac{1}{c}}}

Evaluate the value of 4030 S 4030S upto three correct places of decimals.


Inspiration .

This problem is a part of this set .


The answer is 2015.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 20, 2015

S = a = 1 2015 ( b = 1 2015 ( 1 ) a 1 2 b ) c = 1 2015 1 c = a = 1 2015 ( ( 1 ) a 1 2 b = 1 2015 1 b ) c = 1 2015 1 c = 1 2 a = 1 2015 ( ( 1 ) a 1 b = 1 2015 1 b ) c = 1 2015 1 c Let S k = k = 1 2015 1 k = S k S k + S k . . . S k + S k 2 S k = S k 2 S k = 1 2 \begin{aligned} S & = \frac{\displaystyle \sum_{a=1}^{2015} \left(\displaystyle \sum_{b=1}^{2015} \frac{(-1)^{a-1}}{2b} \right)}{\displaystyle \sum_{c=1}^{2015}\frac{1}{c}} = \frac{\displaystyle \sum_{a=1}^{2015} \left(\frac{(-1)^{a-1}}{2} \displaystyle \sum_{b=1}^{2015} \frac{1}{b} \right)}{\displaystyle \sum_{c=1}^{2015}\frac{1}{c}} \\ & = \frac{\dfrac{1}{2} \displaystyle \sum_{a=1}^{2015} \left((-1)^{a-1} \displaystyle \sum_{b=1}^{2015} \frac{1}{b} \right)}{\displaystyle \sum_{c=1}^{2015}\frac{1}{c}} \quad \quad \small \color{#3D99F6}{\text{Let } S_k = \sum_{k=1}^{2015} \frac{1}{k}} \\ & = \frac{S_k-S_k+S_k-...-S_k+S_k}{2S_k} = \frac{S_k}{2S_k} = \frac{1}{2} \end{aligned}

4030 S = 2015 \Rightarrow 4030S = \boxed{2015}

k k happens to be a dummy variable here so the S k S_k is valid but potentially confusing.

Jake Lai - 5 years, 6 months ago
Akshat Sharda
Sep 16, 2015

I will provide you the very basic solution ,

a = 1 2015 b = 1 2015 ( 1 ) a 1 2 b c = 1 2015 1 c \frac{\displaystyle \sum^{2015}_{a=1} \sum^{2015}_{b=1} \frac{(-1)^{a-1}}{2b}} {\displaystyle \sum^{2015}_{c=1}\frac{1}{c}}

Let's simplify the N u m e r a t o r Numerator of the above expression ,

= a = 1 2015 b = 1 2015 ( 1 ) a 1 2 b =\displaystyle \sum^{2015}_{a=1} \sum^{2015}_{b=1} \frac{(-1)^{a-1}}{2b}

Now let's take a look of the I s t I^{st} term ,

b = 1 b=1 \Rightarrow

= a = 1 2015 ( 1 ) a 1 2 × 1 =\displaystyle \sum^{2015}_{a=1}\frac{(-1)^{a-1}}{2×1}

= 1 2 1 2 + 1 2 . . . + 1 2 =\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{2}

= 1 2 =\frac{1}{2}

I I n d II^{nd} term ,

b = 2 b=2 \Rightarrow

= a = 1 2015 ( 1 ) a 1 2 × 2 =\displaystyle \sum^{2015}_{a=1}\frac{(-1)^{a-1}}{2×2}

= 1 2 × 2 1 2 × 2 + 1 2 × 2 . . . + 1 2 × 2 =\frac{1}{2×2}-\frac{1}{2×2}+\frac{1}{2×2}-...+\frac{1}{2×2}

= 1 2 × 2 =\frac{1}{2×2}

Therefore , a = 1 2015 b = 1 2015 ( 1 ) a 1 2 b \displaystyle \sum^{2015}_{a=1} \sum^{2015}_{b=1} \frac{(-1)^{a-1}}{2b}

= 1 2 + 1 2 × 2 + 1 2 × 3 + . . . + 1 2 × 2015 =\frac{1}{2}+\frac{1}{2×2}+\frac{1}{2×3}+...+\frac{1}{2×2015}

= 1 2 ( 1 + 1 2 + 1 3 + . . . + 1 2015 ) =\frac{1}{2}(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015})

= 1 2 k = 1 2015 1 k =\frac{1}{2} \displaystyle \sum^{2015}_{k=1}\frac{1}{k}

Now we can see that ,

k = 1 2015 1 k = c = 1 2015 1 c \displaystyle \sum^{2015}_{k=1}\frac{1}{k}=\displaystyle \sum^{2015}_{c=1}\frac{1}{c}

Therefore,

S = a = 1 2015 b = 1 2015 ( 1 ) a 1 2 b c = 1 2015 1 c = 1 2 k = 1 2015 1 k c = 1 2015 1 c S=\frac{\displaystyle \sum^{2015}_{a=1} \sum^{2015}_{b=1} \frac{(-1)^{a-1}}{2b}} {\displaystyle \sum^{2015}_{c=1}\frac{1}{c}}=\frac{\frac{1}{2} \displaystyle \sum^{2015}_{k=1}\frac{1}{k}}{\displaystyle \sum^{2015}_{c=1}\frac{1}{c}}

S = 1 2 S=\frac{1}{2}

Therefore , 4030 S = 4030 2 4030S=\frac{4030}{2}

= 2015.000 =\boxed{2015.000}

I liked the problem. But the numbers you chose like 2031120 2031120 or 4092706800 4092706800 are too tedious and unnecessary.

Satyajit Mohanty - 5 years, 9 months ago

S = a = 1 2015 ( b = 1 2015 ( 1 ) a 1 2 b ) c = 1 2015 1 c S=\dfrac{\displaystyle\sum_{a=1}^{2015}(\displaystyle\sum_{b=1}^{2015}\frac{(-1)^{a-1}}{2b})}{\displaystyle\sum_{c=1}^{2015}\frac{1}{c}} = 1 2 ( b = 1 2015 1 b ) ( a = 1 2015 ( 1 ) a 1 ) c = 1 2015 1 c =\frac{1}{2}\dfrac{(\displaystyle\sum_{b=1}^{2015}\frac{1}{b})(\displaystyle\sum_{a=1}^{2015}(-1)^{a-1})}{\displaystyle\sum_{c=1}^{2015}\frac{1}{c}} 1 2 ( 1 ) = 1 2 \frac{1}{2}\cdot (1)=\frac{1}{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...