Why do I love 2015 so much #2

Algebra Level 5

n = 1 2015 n ( n + 2 ) ( n + 3 ) ( n + 4 ) = A B \large{\displaystyle \sum^{2015}_{n=1}\frac{n}{(n+2)(n+3)(n+4)}=\frac{A}{B}}

Find A + B A+B where A , B A,B are positive coprime integers.


This problem is a part of this set .


The answer is 791897.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 19, 2015

1 n + 2 + 1 n + 3 2 n + 4 = 3 n + 8 ( n + 2 ) ( n + 3 ) ( n + 4 ) 3 n ( n + 2 ) ( n + 3 ) ( n + 4 ) = 1 n + 2 + 1 n + 3 2 n + 4 8 ( n + 2 ) ( n + 3 ) ( n + 4 ) = 1 n + 2 + 1 n + 3 2 n + 4 4 ( 1 n + 2 2 n + 3 + 1 n + 4 ) = 3 n + 2 + 9 n + 3 6 n + 4 n ( n + 2 ) ( n + 3 ) ( n + 4 ) = 1 n + 2 + 3 n + 3 2 n + 4 n = 1 2015 n ( n + 2 ) ( n + 3 ) ( n + 4 ) = n = 1 2015 ( 1 n + 2 + 3 n + 3 2 n + 4 ) = n = 3 2017 1 n + n = 4 2018 1 n + 2 n = 4 2018 1 n 2 n = 5 2019 1 n = 1 3 + 1 2018 + 2 4 2 2019 = 112840 679057 A + B = 112840 + 679057 = 791897 \begin{aligned} \frac{1}{n+2} + \frac{1}{n+3} - \frac{2}{n+4} & = \frac{3n+8}{(n+2)(n+3)(n+4)} \\ \Rightarrow \frac{3n}{(n+2)(n+3)(n+4)} & = \frac{1}{n+2} + \frac{1}{n+3} - \frac{2}{n+4} - \frac{8}{(n+2)(n+3)(n+4)} \\ & = \frac{1}{n+2} + \frac{1}{n+3} - \frac{2}{n+4} - 4 \left(\frac{1}{n+2} - \frac{2}{n+3} + \frac{1}{n+4} \right) \\ & = - \frac{3}{n+2} + \frac{9}{n+3} - \frac{6}{n+4} \\ \frac{n}{(n+2)(n+3)(n+4)} & = - \frac{1}{n+2} + \frac{3}{n+3} - \frac{2}{n+4} \\ \Rightarrow \sum_{n=1}^{2015} \frac{n}{(n+2)(n+3)(n+4)} & = \sum_{n=1}^{2015} \left( - \frac{1}{n+2} + \frac{3}{n+3} - \frac{2}{n+4} \right) \\ & = - \sum_{n=3}^{2017} \frac{1}{n} + \sum_{n=4}^{2018} \frac{1}{n} + 2\sum_{n=4}^{2018} \frac{1}{n} - 2\sum_{n=5}^{2019} \frac{1}{n} \\ & = - \frac{1}{3} + \frac{1}{2018} + \frac{2}{4} - \frac{2}{2019} \\ & = \frac{112840}{679057} \\ \\ \Rightarrow A+B & = 112840 + 679057 \\ & = \boxed{791897} \end{aligned}

Moderator note:

Simple standard approach once you realize the telescoping series.

Exactly Same Way, had some problem in the end while calculating the sum of those fractions but eventually got the answer. Sir do u have any short method of calculating the sum of such large fractions?

Kushagra Sahni - 5 years, 8 months ago

Log in to reply

I use Excel spreadsheet to find out the LCM as denominator then find the nominator.

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

All right.

Kushagra Sahni - 5 years, 8 months ago

Hey actual method is of Satvik Pandey not yours .Where you got 1/n+2,1/n+3 and -2/n+4.You are either skipping steps or doing a Hit and trial method.I request you to further add the beggining steps in your solution.Thanks.

D K - 2 years, 10 months ago
Satvik Pandey
Sep 24, 2015

This can be written as

1 2 n = 1 2015 2 n + 4 4 ( n + 2 ) ( n + 3 ) ( n + 4 ) \frac { 1 }{ 2 } \sum _{ n=1 }^{ 2015 }{ \frac { 2n+4-4 }{ (n+2)(n+3)(n+4) } }

1 2 ( n = 1 2015 2 ( n + 2 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) 1 2 4 + ( n + 4 ) ( n + 2 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ) \frac { 1 }{ 2 } \left( \sum _{ n=1 }^{ 2015 }{ \frac { 2(n+2) }{ (n+2)(n+3)(n+4) } } -\frac { 1 }{ 2 } \frac { 4+(n+4)-(n+2) }{ (n+2)(n+3)(n+4) } \right)

n = 1 2015 ( 1 ( n + 3 ) 1 ( n + 4 ) ) n = 1 2015 ( 1 ( n + 2 ) ( n + 3 ) 1 ( n + 3 ) ( n + 4 ) ) \sum _{ n=1 }^{ 2015 }{ \left( \frac { 1 }{ (n+3) } -\frac { 1 }{ (n+4) } \right) } -\sum _{ n=1 }^{ 2015 }{ \left( \frac { 1 }{ (n+2)(n+3) } -\frac { 1 }{ (n+3)(n+4) } \right) }

So, have expressed the sum as difference of consecutive terms. All the intermediate terms get cancelled and only first and last terms are left.

So the answer is 1 6 2017 2018 × 2019 \frac { 1 }{ 6 } -\frac { 2017 }{ 2018\times 2019 } . On simplifying we get A + B = 791897 A+B=791897

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...