Why do I love 2016 so much?

Geometry Level 5

n = 1 201 6 2 + 4032 4034 + 2017 + n n = 1 201 6 2 + 4032 4034 2017 + n \dfrac{\displaystyle \sum_{n=1}^{2016^2+4032} \sqrt{\sqrt{4034}+\sqrt{2017+\sqrt{n}}}}{\displaystyle \sum_{n=1}^{2016^2+4032} \sqrt{\sqrt{4034}-\sqrt{2017+\sqrt{n}}}}

If the value of above expression is in the form cot π a b \cot\dfrac{\pi^a}{b} , find a + b a+b .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Fletcher Mattox
May 20, 2020

Since the author is no longer active and since none of the 10 solvers so far have provided a solution, I'll offer some code just for grins:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from mpmath import *

def f(n):
    return sqrt(sqrt(mpf(4034)) + sqrt((mpf(2017) + sqrt(mpf(n)))))

def g(n):
    return sqrt(sqrt(mpf(4034)) - sqrt((mpf(2017) + sqrt(mpf(n)))))

mp.dps = 100

hi = 2016**2 + 4032
fsum = 0    
gsum = 0

for n in range(1, hi+1):
    fsum += f(n)
    gsum += g(n)

result = fsum/gsum
for a in range(50):
    for b in range(50):
        try:
            c = cot((pi**a)/b)
        except :
            continue
        if abs(c - result) < 10**-9:
            print(a + b)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...