Why do I love Polynomials so much?

Algebra Level 5

a x 4 + b x 2 + c x + d ax^{4}+bx^{2}+cx+d is a quartic polynomial

such that ( a , b , c , d ) ϵ N (a,b,c,d)\epsilon N

Gives,

f ( 1 ) + f ( 2 ) = 44 f(1)+f(2)=44

f ( 2 ) + f ( 3 ) = 146 f(2)+f(3)=146

f ( 3 ) + f ( 4 ) = 416 f(3)+f(4)=416

f ( 5 ) = 694 f(5)=694

Then evaluate ,

f ( 30 ) f ( 20 ) + ( a , b , c , d ) . ( a , b , c , d ) {f(30)-f(20)}+(\sum a,b,c,d).(\prod a,b,c,d)


The answer is 651270.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 10, 2015

It is given that f ( x ) = a x 4 + b x 2 + c x + d f(x) = ax^4 + bx^2 + cx + d , where a , b , c , d N a,b,c,d \in N . It is also given that:

{ f ( 1 ) + f ( 2 ) = 17 a + 5 b + 3 c + 2 d = 44 . . . ( 1 ) f ( 2 ) + f ( 3 ) = 97 a + 13 b + 5 c + 2 d = 146 . . . ( 2 ) f ( 3 ) + f ( 4 ) = 337 a + 25 b + 7 c + 2 d = 416 . . . ( 3 ) f ( 5 ) = 625 a + 25 b + 5 c + d = 694 . . . ( 4 ) \begin{cases} f(1)+f(2) & = 17a+5b+3c+2d & = 44 &...(1) \\ f(2)+f(3) & = 97a + 13b + 5c + 2d & = 146 &...(2) \\ f(3) + f(4) & = 337a+25b+7c+2d & = 416 &...(3) \\ f(5) & = 625a+25b+5c+d & = 694 &...(4) \end{cases}

From ( 1 ) : (1): For a , b , c , d N a,b,c,d \in N , we note that a = 1 a=1 or 2 2 . When a = 2 a=2 , b = c = d = 1 \Rightarrow b=c=d=1 . Substituting them in (2), we have 194 + 13 + 5 + 2 = 214 146 194 + 13 + 5 + 2 = \color{#D61F06}{214 \ne 146} , therefore a 2 \color{#D61F06}{a \ne 2} but a = 1 \color{#3D99F6}{a = 1} . Substituting a = 1 a=1 to the rest of the equations, we have:

{ ( 2 ) : 13 b + 5 c + 2 d = 49 . . . ( 2 a ) ( 3 ) : 25 b + 7 c + 2 d = 79 . . . ( 3 a ) ( 4 ) : 25 b + 5 c + d = 69 . . . ( 4 a ) \begin{cases} (2): & 13b + 5c + 2d & = 49 &...(2a) \\ (3): & 25b+7c+2d & = 79 &...(3a) \\ (4): & 25b+5c+d & = 69 &...(4a) \end{cases}

( 3 a ) ( 4 a ) : 2 c + d = 10 . . . ( 5 ) c < 5 ( 2 a ) : 13 b + c + 2 ( 2 c + d ) = 49 13 b + c = 29 b = { 1 c = 16 > 5 rejected 2 c = 3 < 5 accepted ( 5 ) : 2 ( 3 ) + d = 10 d = 4 \begin{array} {rlll} (3a)-(4a): & 2c+d = 10 \quad ...(5) & \Rightarrow \color{#3D99F6}{c < 5} \\ (2a): & 13b + c + 2(2c+d) = 49 & \Rightarrow 13b + c = 29 & \Rightarrow b = \begin{cases} 1 & \Rightarrow c = \color{#D61F06}{16 > 5 \text{ rejected}} \\ 2 & \Rightarrow c = \color{#3D99F6}{\space \space 3 < 5 \text{ accepted}}\end{cases} \\ (5): & 2(3)+d = 10 & \Rightarrow \color{#3D99F6}{d = 4} \end{array}

Therefore,

f ( 30 ) f ( 20 ) + ( a + b + c + d ) a b c d = 810000 + 2 ( 900 ) + 3 ( 30 ) + 4 [ 160000 + 2 ( 400 ) + 3 ( 20 ) + 4 ] + ( 1 + 2 + 3 + 4 ) ( 1 × 2 × 3 × 4 ) = 810000 + 1800 + 90 + 4 [ 160000 + 800 + 60 + 4 ] + 10 ( 24 ) = 811894 160864 + 240 = 651270 f(30)-f(20)+(a+b+c+d)abcd \\ = 810000 + 2(900)+3(30)+ 4 - [160000 + 2(400) + 3(20)+ 4] +(1+2+3+4)(1\times 2 \times 3 \times 4) \\ = 810000+1800+90+4-[160000+800+60+4] + 10(24) \\ = 811894 - 160864 + 240 = \boxed{651270}

@Chew-Seong Cheong , Good solution Sir! Did it the same way!

Hrithik Nambiar - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...