Sum up the cos

Geometry Level 5

S = n = 1 100 cos 4 ( n π 201 ) \large{S = \sum_{n=1}^{100} \cos ^{4} \left(\dfrac{n \pi}{201} \right)}

Find the value of S S correct upto 4 decimal places.


The answer is 37.1875.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

First use the power reduction formula:

cos 4 ( θ ) = 3 + 4 cos ( 2 θ ) + cos ( 4 θ ) 8 \cos^4(\theta)=\dfrac{3+4\cos(2\theta)+\cos(4\theta)}{8}

So, the sum becomes to:

8 S = n = 1 100 ( 3 + 4 cos ( 2 π n 201 ) + cos ( 4 π n 201 ) ) 8S=\displaystyle \sum_{n=1}^{100}\left(3+4\cos\left(\dfrac{2\pi n}{201}\right)+\cos\left(\dfrac{4\pi n}{201}\right)\right)

Then let w = e 2 π i / 201 w=e^{2\pi i/201} . We know that both w w and w 2 w^2 are primitive 201st roots of unity. Also, 1 2 ( w n + w 201 n ) = cos ( 2 π n 201 ) \dfrac{1}{2}(w^n+w^{201-n})=\cos\left(\dfrac{2\pi n}{201}\right) and w + w 2 + + w 200 = 1 w+w^2+\cdots+w^{200}=-1 , so the sum is:

8 S = 300 + 2 n = 1 100 ( w n + w 201 n ) + 1 2 n = 1 100 ( ( w 2 ) n + ( w 2 ) 201 n ) 8S=300+2\displaystyle \sum_{n=1}^{100} (w^n+w^{201-n})+\dfrac{1}{2}\displaystyle \sum_{n=1}^{100} ((w^2)^n+(w^2)^{201-n})

8 S = 300 + 2 ( 1 ) + 1 2 ( 1 ) = 595 2 8S=300+2(-1)+\dfrac{1}{2}(-1)=\dfrac{595}{2}

S = 595 16 S=\boxed{\dfrac{595}{16}}

amazing solution only a small calculation error in the last step , I think .

baljeet dhanoa - 5 years, 8 months ago

Log in to reply

Yes, it should be 595/16. Thanks.

Alan Enrique Ontiveros Salazar - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...