Why is y y squared?

Calculus Level 5

Consider the differential equation d y d x = x 2 + y 2 x y \frac{dy}{dx}=\frac{\sqrt{x^{2}+y^{2}}-x}{y}

Given that y ( 0 ) = 4 y(0)=4 , if the equation y ( x ) = 0 y(x)=0 has exactly one negative (real) root β \beta , find the value of β \beta .


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

d y d x = x 2 + y 2 x y y d y d x + x = x 2 + y 2 d d x ( y 2 2 + x 2 2 ) = x 2 + y 2 d d x ( y 2 + x 2 ) = 2 x 2 + y 2 Let z = x 2 + y 2 d z d x = 2 z z 1 2 d z = 2 d x 2 z 1 2 = 2 x + 2 c c = a constant z 1 2 = x + c x 2 + y 2 = x + c When x = 0 , y = 4 0 2 + 4 2 = 0 + c c = 4 x 2 + y 2 = x + 4 x 2 + y 2 = x 2 + 8 x + 16 y 2 = 8 x + 16 For y = 0 : 8 ( β + 2 ) = 0 β = 2 \begin{aligned} \frac{dy}{dx} & = \frac{\sqrt{x^2+y^2}-x}{y} \\ y \frac{dy}{dx} + x & = \sqrt{x^2+y^2} \\ \frac{d}{dx} \left(\frac{y^2}{2} + \frac{x^2}{2} \right) & = \sqrt{x^2+y^2} \\ \frac{d}{dx} \left(\color{#3D99F6}{y^2 + x^2} \right) & = 2 \sqrt{\color{#3D99F6}{x^2+y^2}} \quad \quad \small \color{#3D99F6}{\text{Let } z = x^2+y^2} \\ \frac{d\color{#3D99F6}{z}}{dx} & = 2 \sqrt{\color{#3D99F6}{z}} \\ \int z^{-\frac{1}{2}} \space dz & = \int 2 \space dx \\ 2 z^{\frac{1}{2}} & = 2 x + 2\color{#3D99F6}{c} \quad \quad \small \color{#3D99F6}{c = \text{a constant}} \\ z^{\frac{1}{2}} & = x + c \\ \Rightarrow \sqrt{x^2+y^2} & = x + c \quad \quad \small \color{#3D99F6}{\text{When }x = 0, y = 4} \\ \sqrt{0^2+4^2} & = 0 + c \\ \Rightarrow c & = 4 \\ \Rightarrow \sqrt{x^2+y^2} & = x + 4 \\ x^2+y^2 & = x^2 + 8x + 16 \\ \Rightarrow y^2 & = 8x + 16 \\ \text{For } y = 0: \quad 8(\beta+2) & = 0 \\ \Rightarrow \beta & = \boxed{-2} \end{aligned}

Awesome solution !

Pulkit Gupta - 5 years, 6 months ago

Beautiful.

Pablo Padilla - 5 years, 5 months ago
Mark Hennings
Dec 7, 2015

Subsituting y = x u y = xu , the DE becomes x u + u = 1 + u 2 1 u or x u = 1 + u 2 ( 1 1 + u 2 ) u , xu' + u \; =\; \frac{\sqrt{1+u^2}-1}{u} \qquad \mbox{or} \qquad xu' \; = \; \frac{\sqrt{1+u^2}(1-\sqrt{1+u^2})}{u} \;, and so, separating variables, 0 = d x x + u d u 1 + u 2 ( 1 + u 2 1 ) . 0 \; = \; \int \frac{dx}{x} + \int \frac{u\,du}{\sqrt{1+u^2}(\sqrt{1+u^2}-1)} \;. Putting v = 1 + u 2 v = \sqrt{1+u^2} yields 0 = d x x + d v v 1 = l n x + ln ( v 1 ) + c 0 \; = \; \int \frac{dx}{x} + \int \frac{dv}{v-1} \; = \; ln x + \ln (v-1) + c (choosing v 1 v-1 rather than v 1 |v-1| , since this will match the initial condition shortly to be applied). Thus A = x ( v 1 ) = x 1 + u 2 x = x 2 + y 2 x . A \; = \; x(v-1) \; = \; x\sqrt{1+u^2} - x \; = \; \sqrt{x^2 + y^2} - x \;. Since y ( 0 ) = 4 y(0) = 4 we deduce that A = 4 A=4 , and so x 2 + y 2 = x + 4 \sqrt{x^2 + y^2} = x + 4 .

Putting y = 0 y=0 , we need to solve x = x + 4 |x| = x+4 . The only solution to this equation is x = 2 x=-2 .

Pablo Padilla
Dec 8, 2015

Make the substitution r 2 = x 2 + y 2 r^2=x^2+y^2

By implicit differentiation, this gives

d d x r 2 = d d x ( x 2 + y 2 ) \frac{d}{dx} r^2=\frac{d}{dx}( x^2+y^2) 2 r d r d x = 2 x + 2 y d y d x \Rightarrow 2r\frac{dr}{dx}=2x+2y\frac{dy}{dx} d y d x = r d r d x x y \Rightarrow \frac{dy}{dx}=\frac{r\frac{dr}{dx}-x}{y}

Hence, the original equation reduces to

r d r d x x y = r 2 x y \frac{r\frac{dr}{dx}-x}{y}=\frac{\sqrt{r^2}-x}{y} (No need to consider absolute value of r r since x 2 + y 2 x^2+y^2 is always possitive) r d r d x = r d r d x = 1 \Rightarrow r\frac{dr}{dx}=r\Rightarrow \frac{dr}{dx}=1 This is a separable ODE, which yields d r = d x \int dr=\int dx r = x + C x + C = x 2 + y 2 \Rightarrow r=x+C \Rightarrow x+C=\sqrt{x^2+y^2} Hence, the general solution is y 2 2 C x C 2 = 0 y^2-2Cx-C^2=0 Since y ( 0 ) = 4 y(0)=4 , we know that C = ± 4 C=\pm4 , but for there to be one NEGATIVE solution to y ( x ) = 0 y(x)=0 , we choose C = 4 C=4 . Hence: y 2 = 8 x + 16 y^2=8x+16 Finally, we solve y ( x ) = 0 8 x + 16 = 0 y(x)=0\Rightarrow 8x+16=0 x = 2 \boxed{x=-2}

What does ODE stand for??

Yuki Kuriyama - 5 years, 6 months ago

Log in to reply

Ordinary Differential Equation

Pablo Padilla - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...