Why isn't it 0

Algebra Level 4

As x x and y y ranges over all real values, what is the minimum value of

( 15 x + 30 y + 20 ) 2 + ( 20 x + 40 y + 15 ) 2 ? (15x + 30y + 20)^2 + (20x + 40y + 15)^2?


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

21 solutions

Aaron Doman
Oct 6, 2013

Let a = 5 x + 10 y a=5x+10y . Then the expression becomes ( 3 a + 20 ) 2 + ( 4 a + 15 ) 2 (3a+20)^2+(4a+15)^2 = 25 a 2 + 240 a + 625 =25a^2+240a+625 = ( 5 a + 24 ) 2 + 49 49. =(5a+24)^2+49\ge 49. Thus, the minimum is 49 \boxed{49} .

Moderator note:

Great job!

Sorry, can this been found by calculus?

Weijie Chen - 7 years, 8 months ago

Log in to reply

Sure just let x+2y=z and then find minima of f(z)

Vicky Bro - 7 years, 8 months ago

Richtig, Ja.

Angel Raygoza - 1 year, 2 months ago
Carl Denton
Oct 8, 2013

The minimum is 49: To find the minimum, we can take the partial derivatives of f ( x ) = ( 15 x + 30 y + 20 ) 2 + ( 20 x + 40 y + 15 ) 2 f(x) = (15x + 30y + 20)^2 + ( 20x + 40y + 15)^2 with respect to x and y and set them equal to zero. This gives: f x = 2 15 ( 15 x + 30 y + 20 ) + 2 10 ( 20 x + 40 y + 15 ) = 0 \frac{\partial f}{\partial x} = 2 * 15 * (15x + 30y + 20) + 2 * 10 * ( 20x + 40y + 15) = 0 f y = 2 30 ( 15 x + 30 y + 20 ) + 2 40 ( 20 x + 40 y + 15 ) = 0 \frac{\partial f}{\partial y} = 2 * 30 * (15x + 30y + 20) + 2 * 40 * (20x + 40y + 15) = 0 Further simplification yields a single equation: x + 2 y = 24 25 x + 2y = -\frac{24}{25} or 2 y = x 24 25 2y = -x - \frac{24}{25} Plugging this into the original function gives f ( x ) = ( 28 5 ) 2 + ( 21 5 ) 2 = 1225 25 = 49 f(x) = \left( \frac{28}{5}\right)^2 + \left( -\frac{21}{5} \right)^2 = \frac{1225}{25} = 49

If you take the partial derivatives then the f(

Ninoslav Plivelić - 4 years, 11 months ago

I naturally do this.

Angel Raygoza - 1 year, 2 months ago

Rather, I do something similar.

Angel Raygoza - 1 year, 2 months ago
Daniel Liu
Oct 7, 2013

We can partially factorize 15 x + 30 y + 20 = 15 ( x + 2 y ) + 20 15x+30y+20=15(x+2y)+20 and 20 x + 40 y + 15 = 20 ( x + 2 y ) + 15 20x+40y+15=20(x+2y)+15 . Since x , y x,y ranges over all real values, x + 2 y x+2y can take on all real values; we can therefore replace x + 2 y x+2y as z z . We need to find the minimum of ( 15 z + 20 ) 2 + ( 20 z + 15 ) 2 (15z+20)^2+(20z+15)^2 . Expanding and completing the square, we get ( 25 z + 24 ) 2 + 49 (25z+24)^2+49 . The minimum ( 25 z + 24 ) 2 (25z+24)^2 can be is 0 0 ; therefore, the minimum the whole thing can be is 49 \boxed{49} .

Or, by Calculus, takes z=x+2y, get f(z), and put f'(z)=0, z=-25/24. Replace z in the f(z), and obtain 49.

Gabriel Lefundes - 7 years, 8 months ago

Log in to reply

Right. But as for now I still don't know calculus so I'll have to do this.

Daniel Liu - 7 years, 8 months ago
  • Let's first take 25 out from both terms

[ 5 ( 3 x + 6 y + 4 ) ] 2 + [ 5 ( 4 x + 8 y + 3 ) ] 2 [5(3x+6y+4)]^2+[5(4x+8y+3)]^2

25 ( 3 x + 6 y + 4 ) 2 + 25 ( 4 x + 8 y + 3 ) 2 25(3x+6y+4)^2+25(4x+8y+3)^2

25 [ ( 3 x + 6 y + 4 ) 2 + ( 4 x + 8 y + 3 ) 2 ] 25[(3x+6y+4)^2+(4x+8y+3)^2]

  • If we use to do factorizing, we can easily see the factor " x + 2 y x+2y " inside the terms. So let's factorize it.

25 [ 3 ( x + 2 y ) + 4 ] 2 + [ 4 ( x + 2 y ) + 3 ] 2 25{[3(x+2y)+4]^2+[4(x+2y)+3]^2}

  • But it seems too much brackets there, so let's call x + 2 y = k x+2y=k to make it simpler.

25 [ ( 3 k + 4 ) 2 + ( 4 k + 3 ) 2 ] 25[(3k+4)^2+(4k+3)^2]

  • It is now clear that minimum value we were looking for is 25 × min ( ( 3 k + 4 ) 2 + ( 4 k + 3 ) 2 ) 25 \times \min((3k + 4)^{2} + (4k + 3)^{2}) . Using the formula of extreme point of quadratic function, gives us min ( ( 3 k + 4 ) 2 + ( 4 k + 3 ) 2 ) = 49 25 \min((3k+4)^2+(4k+3)^2) = \frac{49}{25} . And so, the final answer is 25 × 49 25 = 49 25 \times \frac{49}{25} = \boxed{49}
Sayantan Guha
Oct 7, 2013

Choose x + 2y = z So the given equation becomes: (15z + 20)^2 + (20z + 15)^2 = F(z) (Say) i.e. F(z) = 25z^2 + 48z + 9 .............(i) Differentiating F w.r.t. z & computing F'(z) = 0 we get z = - 24/25 Also F''(- 24/25) > 0 which means that the function attains it minima at z = - 24/25 So putting z = - 24/25 in (i) we get 49

Cool observation

Vicky Bro - 7 years, 8 months ago
Jonathan Lowe
Oct 7, 2013

The reason I could solve this problem was because the x and y coefficients have a common ratio (that is x:2y).

We find the lowest common multiple of the two expressions and we find that it is 60 x + 120 y 60x+120y

Let z = 60 x + 120 y z = 60x+120y then we can rewrite the expression as ( z 4 + 20 ) 2 + ( z 3 + 15 ) 2 \left(\frac{z}{4} + 20\right)^{2} + \left(\frac{z}{3} + 15\right)^{2} .

Now we expand the expression and differentiate:

0 = d d z ( 25 144 z 2 + 20 z + 625 ) = 50 144 z + 20 0 = \frac{d}{dz}\left(\frac{25}{144}z^{2} + 20z + 625\right) = \frac{50}{144}z + 20

50 144 z = 20 z = 288 5 \frac{50}{144}z = -20 \implies z = -\frac{288}{5}

Therefore we substitute this value of z into our formula (as it will give us the minimum value):

( 288 20 + 20 ) 2 + ( 288 15 + 15 ) 2 = 49 \left(-\frac{288}{20}+20\right)^{2} + \left(-\frac{288}{15}+15\right)^{2} = 49

So our answer is 49 \fbox{49}

Observe that

( 15 x + 30 y + 20 ) 2 + ( 20 x + 40 y + 15 ) 2 = ( 25 x + 50 y + 24 ) 2 + 49 (15x+30y+20)^{2}+(20x+40y+15)^{2}=(25x+50y+24)^{2}+49 .

But

( 25 x + 50 y + 24 ) 2 0 (25x+50y+24)^{2}\ge0 .

Hence,

( 25 x + 50 y + 24 ) 2 + 49 49 (25x+50y+24)^{2}+49\ge49 .

Which imlies that the minimum must be 49 \boxed{49}

C D
Oct 9, 2013

( 15 x + 30 y + 20 ) 2 + ( 20 x + 40 y + 15 ) 2 (15x + 30y + 20)^2 + (20x + 40y + 15)^2

Factorizing:

( 5 ( 3 x + 6 y + 4 ) ) 2 + ( 5 ( 4 x + 8 y + 3 ) ) 2 (5(3x + 6y + 4))^2 + (5(4x + 8y + 3))^2

= 25 ( 3 x + 6 y + 4 ) 2 + 25 ( 4 x + 8 y + 3 ) 2 = 25(3x + 6y + 4)^2 + 25(4x + 8y + 3)^2

= 25 ( ( 3 x + 6 y + 4 ) 2 + ( 4 x + 8 y + 3 ) 2 ) = 25( (3x + 6y + 4)^2 + (4x + 8y + 3)^2 )

In both equations, the x x and (y) can be factorized into ( x + 2 y ) (x + 2y) , giving

25 ( ( 3 ( x + 2 y ) + 4 ) 2 + ( 4 ( x + 2 y ) + 3 ) 2 ) 25( (3(x + 2y) + 4)^2 + (4(x + 2y) + 3)^2 )

We don't need to know the individual values of x x and y y , only the value of x + 2 y x + 2y . Changing x + 2 y x + 2y to a a :

25 ( ( 3 a + 4 ) 2 + ( 4 a + 3 ) 2 ) 25( (3a + 4)^2 + (4a + 3)^2 )

Squaring:

25 ( 9 a 2 + 24 a + 16 + 16 a 2 + 24 a + 9 ) 25( 9a^2 + 24a + 16 + 16a^2 + 24a + 9 )

= 25 ( ( 25 a 2 + 48 a + 25 ) = 25( (25a^2 + 48a + 25)

We now have a straightforward quadratic equation. To find the vertex, we find two a v a l u e s a-values that give the same result. 25 a 2 + 48 a = 0 25a^2 + 48a = 0

a ( 25 a + 48 ) = 0 a(25a + 48) = 0

So a = 0 a = 0 or 25 a + 48 = 0 25a + 48 = 0 this being a = 48 25 a = -\frac{48}{25} . The vertex is at the value of a a halfway between these two so a = 48 25 2 = 24 25 a = - \frac {\frac{48}{25} }{2} = - \frac{24}{25}

Putting this into the equation, we have:

25 ( 25 ( 24 25 ) 2 + 48 ( 24 25 ) + 25 ) 25(25(- \frac{24}{25})^2 + 48( - \frac{24}{25}) + 25)

25 ( 25 ( 24 25 ) ( 24 25 ) 48 ( 24 25 ) + 25 ) 25(25(\frac{24}{25})(\frac{24}{25}) - 48(\frac{24}{25} )+ 25)

25 ( 2 4 2 25 48 ( 24 ) 25 + 25 ) 25( \frac{24^2}{25} - \frac{48(24)}{25} + 25)

= ( 2 4 2 48 ( 24 ) + 2 5 2 ) = (24^2 - 48(24) + 25^2)

= ( 2 5 2 2 4 2 ) = (25^2 - 24^2)

= ( 25 + 24 ) ( 25 24 ) = (25 + 24)(25 - 24)

= 49 49

Nam Nguyen Hoang
Oct 7, 2013

$$\left(15x+30y+20\right)^2+\left(20x+40y+15\right)^2$$ $$=\left[15(x+2y)+20\right]^2+\left[20(x+2y)+15\right]^2$$ $$= \left(10^2+20^2\right)(x+2y)^2 + 2.600(x+2y)+625$$ $$= \left[25(x+2y)\right]^2 + 2.25.24(x+2y)+576+49$$ $$= \left[25(x+2y)+24\right]^2 + 49 \ge 49$$ $$\boxed{\text{My solution is 49}}$$

Jan J.
Oct 7, 2013

Note that ( 15 x + 30 y + 20 ) 2 + ( 20 x + 40 y + 15 ) 2 = 625 x 2 + 2500 x y + 1200 x + 2500 y 2 + 2400 y + 625 = ( 25 x + 50 y + 24 ) 2 + 49 (15x+30y+20)^2+(20x+40y+15)^2 = \\ 625 x^2+2500 x y+1200 x+2500 y^2+2400 y+625 = \\ (25x + 50y + 24)^2 + 49

Hence 49 \boxed{49} is the answer.

Siam Habib
Oct 7, 2013

We can see that ( 15 x + 30 y + 20 ) 2 + ( 20 x + 40 y + 15 ) 2 = ( 25 x + 50 y + 24 ) 2 + 49 (15x+30y+20)^2+(20x+40y+15)^2=(25x+50y+24)^2+49 Since, x , y x,y ranges over all real numbers there are such pairs of ( x , y ) (x,y) for which ( 25 x + 50 y + 24 ) 2 = 0 (25x+50y+24)^2=0 .

So, the minimum value of ( 15 x + 30 y + 20 ) 2 + ( 20 x + 40 y + 15 ) 2 = ( 25 x + 50 y + 24 ) 2 + 49 = 0 + 49 = 49 (15x+30y+20)^2+(20x+40y+15)^2=(25x+50y+24)^2+49=0+49=49

Anindya Sharma
Oct 7, 2013

Consider a = 17.5 x + 35 y + 17.5 a = 17.5x + 35y + 17.5 and b = 2.5 x + 5 y 2.5 b = 2.5x +5y -2.5

Let F be the function to minimise We see that F = ( a + b ) 2 + ( a b ) 2 F = (a+b)^{2} + (a-b)^{2}

Also, by inspection a = 7 b + 35 a = 7b + 35

Substituting for a a and simplifying, we get F = 100 ( b 2 + 98 10 b + 49 2 ) F = 100 ( b^{2} + \frac{98}{10}b + \frac{49}{2} )

= = 100 ( ( b + 49 10 ) 2 + 49 2 2401 10 ) 100( (b+ \frac{49}{10})^{2} + \frac{49}{2} - \frac{2401}{10} )

This is minimum at b = 49 / 10 b = - 49/10 (to make the square 0). Since b b is linear in x x and y y , it can take this value.

Hence F m i n = 100 ( 49 2 2401 100 ) F_{min} = 100( \frac{49}{2} - \frac{2401}{100} ) which is 49

Jeremy Kudlick
Dec 27, 2015

Let n = 5 x +10 y

f( n ) = (3 n +20)^2+(4 n +15)^2 = 25 n ^2+240 n +625

To find the minimum of a quadratic, we must find where the slope is 0, which is determined by solving for the derivative f'( n ) = 50 n +240; f'( n ) = 0 when n = -4.8

f(-4.8) = 25(-4.8)^2+240(-4.8)+625 = 576-1152+625 = 49

Great substitution approach!

Calvin Lin Staff - 5 years, 5 months ago
Omar Pulido
Oct 13, 2013

Okay so we start by expanding everything...

( 15 x + 30 y + 20 ) 2 + ( 20 x + 40 y + 15 ) 2 (15x+30y+20)^2 + (20x+40y+15)^2 \implies

625 x 2 + 2500 x y + 1200 x + 2500 y 2 + 2400 y + 625 625x^2 + 2500xy + 1200x + 2500y^2 + 2400y + 625

Then we can subtract 49 (and then add it back) to make it factorable.

625 x 2 + 2500 x y + 1200 x + 2500 y 2 + 2400 y + 576 + 49 \implies 625x^2 + 2500xy + 1200x + 2500y^2 + 2400y + 576 + 49 ( 25 x + 24 + 50 y ) 2 + 49 \implies (25x + 24 + 50y)^2 + 49

Well making the square value zero, we get 49 \boxed{49} as our final answer.

And we factor it substituting a variable for (x+2y)...sorry that I didn't clarify that.

Omar Pulido - 7 years, 8 months ago
Nick Smith
Oct 11, 2013

In order to find the minimum value of this function we can find where its derivative is equal to zero.

Expanding (15x+30y+20)^2 +(20x+40y+15)^2 out we get

625x^2 + 1200x + 2500xy + 2400y + 2500y^2 + 625

The work is kind of messy so I'm going to leave that out.

We want to find the derivative with respect to x and y. They turn out to be the same equation to work with when d/dx and d/dy = 0

So...

d/dx = 2(625x) + 1200 + 2500y = 1250x + 2500y + 1200 = 50(25x + 50y + 24)

Setting this equal to 0 we get

25x + 50y + 24 = 0

We need to find the intercept values of x and y when 25x + 50y = -24 y = (-24 - 25x)/(50)

x-intercept = -24/25 y-intercept = -24/50

Plugging x into the original equation and 0 for y we get 49. We also get 49 for substituting the y-intercept value and 0 for x.

(15(-24/25) + 20)^2 + (20(-24/25) + 15)^2 = 49

(30(-24/50) + 20)^2 + (40(-24/50) + 15)^2 = 49

Yuri Campelo
Oct 11, 2013

É possivel resolver essa questão usando conhecimento de "matemática avançada". Basta chamar a expressão dada de z(x,y) e fazer as derivadas parciais em relação a x e y depois igualá-las à zero, após isso um sistema linear será encontrado e encontrar os valores de x e y que darão o valor mínimo de z(x,y) que serão x= -0.96 e y= 0.

Let the variable a = 15x + 30y. Then 20x + 40y is 4/3 a, and I am minimizing the sum of two quadratics in a, which is itself a quadratic in a. Since the coefficient of the quadratic term is positive, I know I'll find its minimum on the quadratic's axis of symmetry. The axis of symmetry is at a = -72/5. Putting this value of a into the quadratic gave me a minimum of 49.

TAKE 15 AND 20 OUT AND USE DIFFERENTIATION TO SOLVE PROBLEM

Wendy Singhal
Oct 8, 2013

If you let x + 2y = z, then the expression becomes (15z+20)^2 + (20z+15)^2 which is 625z^2+1200z+625 Differentiate to get 1250z +1200 and the minimum value of this occurs when z = -24/25 Substitute back into expression to get value of 49

( 15 x + 30 y + 20 ) 2 + ( 20 x + 40 y + 15 ) 2 (15x+30y+20)^2+(20x+40y+15)^2

= 5 2 { ( 3 x + 6 y + 4 ) 2 + ( 4 x + 8 y + 3 ) 2 } =5^2\{(3x+6y+4)^2+(4x+8y+3)^2\}

= 5 2 { 3 2 ( x + 2 y ) 2 + 4 2 + 24 ( x + 2 y ) + 4 2 ( x + 2 y ) + 3 2 + 24 ( x + 2 y ) } =5^2\{3^2(x+2y)^2+4^2+24*(x+2y)+4^2(x+2y)+3^2+24*(x+2y)\}

= 5 2 { 5 2 ( x + 2 y ) 2 + 48 ( x + 2 y ) + 5 2 } =5^2\{5^2(x+2y)^2+48(x+2y)+5^2\}

= 5 4 { ( x + 2 y + 24 5 2 ) 2 + 1 2 4 2 5 4 } =5^4\{(x+2y+{24 \over 5^2})^2+1-{24^2 \over 5^4}\}

The minimum value is when x + 2 y + 24 5 2 x+2y+{24 \over 5^2} is zero. So the minimum value is 5 4 ( 1 2 4 2 5 4 ) = 2 5 2 2 4 2 = 49 5^4(1-{24^2 \over 5^4}) = 25^2-24^2 = 49 .

Daniel Magen
Oct 7, 2013

(15x+30y+20)^2 + (20x+40y+15)^2

= (15(x+2y)+20)^2 + (20(x+2y(+15)^2

(x+2y = a)

=(15a+20)^2 + (20a+15)^2

=625a^2 + 1200a + 625

= 25(25a^2 + 48a + 25)

f(x) = 25x^2 + 48x +25

f '(x) = 50x+48 = 0

x = -48/50

f ''(x) = 50 (is positive, hence the function only has only minima points - hence x=-48/50 is the minimum point) (that's how we say it in my language so it may sound strange)

if a=-48/50 then we got 25(23.04-46.08+25) = 49

can this be solved using trigonometry

nandish bt - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...