Why isn't the integrand positive?

Calculus Level 4

0 1 ln x d x = π m n \displaystyle\int_0^1 \sqrt{-\ln x} \quad\mathrm dx=\frac{\pi^{m}}{n}

If n n is an integer and m m is a rational number that satisfy the equation above, find m + n m+n .


The answer is 2.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Siddharth Bhatt
Jun 18, 2015

y = ln x y=-\ln x \bbox [ 8 p t , b o r d e r : 1 p t s o l i d c r i m s o n ] e y = e ln x = e ln 1 x = 1 x \bbox[8pt, border:1pt solid crimson]{e^y=e^{-\ln x}=e^{\ln\frac{1}{x}}=\frac{1}{x}}

d x = d y e y \color{#008080}{dx= -\frac{dy}{e^y}}

0 1 ln x d x = 0 y ( d y e y ) = 0 e y y 1 2 d y = ( 1 2 ) ! \displaystyle\int_0^1 \sqrt{-\ln x} dx=\displaystyle\int_{\infty}^0 \sqrt{y} \left(-\frac{dy}{e^y}\right)=\displaystyle\int_0^{\infty} e^{-y} y^{\frac{1}{2}}dy=\left(\frac{1}{2}\right)!

\bbox [ 8 p t , b o r d e r : 1 p t s o l i d c r i m s o n ] ( 1 2 ) ! = 1 2 π \bbox[8pt, border:1pt solid crimson]{\left(\frac{1}{2}\right)!=\frac{1}{2} \sqrt{\pi}}

0 1 ln x d x = 1 2 π \Large{\color{crimson}{\int_0^1 \sqrt{-\ln x} dx=\frac{1}{2} \sqrt{\pi}}}

Here only n n is an integer. Please edit the question accordingly ¨ \ddot\smile

Karthik Kannan - 5 years, 12 months ago

The question says m,n are integers :/

Samarth Agarwal - 5 years, 12 months ago

I transformed this to gamma function then I did it

Righved K - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...