Why not 2015?

Geometry Level 5

The sides of a rhombus are parallel to y = 2 x + 3 y=2x+3 and 2 y = x + 5 2y=x+5 . The diagonals of the rhombus intersect at ( 2014 , 2016 ) (2014,2016) . If one vertex of the rhombus lies on the y-axis and the possible values of the ordinates of this vertex are a & b a \ \& \ b such that a > b a>b , then find the value of a b \dfrac{a} {b}


The answer is 2015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A diagonal of a rhombus bisects the angle. Slope of the two sides are m 1 = 2 , m 2 = . 5. The slope of the diagonal, m = T a n ( a r c t a n ( m 1 ) + a r c t a n ( m 2 ) 2 ) = 1. When the lower left vertex is on the y-axis, its coordinates are (0,2) \text{A diagonal of a rhombus bisects the angle. Slope of the two sides are }m_1=2,\ m_2=.5.\\ \text{The slope of the diagonal, }m=Tan \left (\dfrac{arctan(m_1)+arctan(m_2)}2 \right )=1.\\ \text{When the lower left vertex is on the y-axis, its coordinates are (0,2)} \\ it is on the slope 1 and pass through (2014,2016). The upper and lower left verities are at equal vertical distances from (2014,2016). \because \text{ it is on the slope 1 and pass through (2014,2016). }\\ \text{The upper and lower left verities are at equal vertical distances from (2014,2016).}\\ This distance =2016-2=2014. b = 2 a n d a = 2 + 2 2014. a b = 2015 \text{This distance =2016-2=2014.}\\ \therefore \ b=2 \ and \ a=2+2*2014.\\ \dfrac a b = \Large\ \ \ \ \ \ \ \color{#D61F06}{2015}

I failed to understand how a point lies on the Y- axis with coordinates (2,0). Better check your wording before you post a problem.

Zobair Caca - 5 years, 7 months ago

Log in to reply

Thank you so much. I have corrected. I will try to be more careful.

Niranjan Khanderia - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...