Why only z z ?

Algebra Level 5

Given z z and a r a_{r} are complex numbers with r = 1 n a r z r = 1 \displaystyle \sum_{r=1}^n a_r z^r = 1 for a r 2 \mid a_r \mid \leq 2 .

Find the minimum value of z \mid z \mid .


The answer is 0.333.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mudit Bansal
Feb 18, 2015

Given: a 1 z 1 + a 2 z 2 + . . . . + a n z n = 1 { a }_{ 1 }{ z }^{ 1 }+{ a }_{ 2 }{ z }^{ 2 }+....+{ a }_{ n }{ z }^{ n }=1 Now using the triangular inequality we get: a 1 z 1 + a 2 z 2 + . . . . + a n z n a 1 z 1 + a 2 z 2 + . . + a n z n 1 a 1 z 1 + a 2 z 2 + . . . a n z n \left| { a }_{ 1 }{ z }^{ 1 }+{ a }_{ 2 }{ z }^{ 2 }+....+{ a }_{ n }{ z }^{ n } \right| \le \left| { a }_{ 1 }{ z }^{ 1 } \right| +\left| { a }_{ 2 }{ z }^{ 2 } \right| +..+\left| { a }_{ n }{ z }^{ n } \right| \\ 1\le \left| { a }_{ 1 }{ z }^{ 1 } \right| +\left| { a }_{ 2 }{ z }^{ 2 } \right| +...\left| { a }_{ n }{ z }^{ n } \right| Now maximum of R.H.S. occurs at a r = 2 \left| { a }_{ r } \right| =2 Therefore, 1 2 z 1 + z 2 + . . . + z n \frac { 1 }{ 2 } \le \left| { z }^{ 1 } \right| +\left| { z }^{ 2 } \right| +...+\left| { z }^{ n } \right| Now adding extra z \left| z \right| will not effect the inequality.Therefore, 1 2 z 1 + z 2 + . . . + z n + z n + 1 + . . . . \frac { 1 }{ 2 } \le { \left| z \right| }^{ 1 }+{ \left| z \right| }^{ 2 }+...+{ \left| z \right| }^{ n }+{ \left| z \right| }^{ n+1 }+....\infty Hence, 1 2 z 1 z z 1 3 z m i n = 1 3 \frac { 1 }{ 2 } \le \frac { \left| z \right| }{ 1-\left| z \right| } \\ \left| z \right| \ge \frac { 1 }{ 3 } \Rightarrow { \left| z \right| }_{ min }=\frac { 1 }{ 3 }

That's not enough... how do you know the minimum isn't greater than 1 3 \dfrac{1}{3} ?

Ariel Gershon - 6 years, 3 months ago

i didnt saw that r is from 1 not 0 ;-(

Ashutosh Sharma - 3 years, 4 months ago

great solution , thanks for the solution

Utkarsh Bansal - 6 years, 3 months ago

Have a look at my dispute. @Utkarsh Bansal

Sandeep Bhardwaj - 6 years, 3 months ago

holy mother, i thought exactly like you except that i didnt get it because i wrote the result for the geometric forgettig it started in 1 :(

Héctor Andrés Parra Vega - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...