Why so

Algebra Level 4

( 2 4 + 1 4 ) ( 4 4 + 1 4 ) ( 6 4 + 1 4 ) ( 8 4 + 1 4 ) ( 1 0 4 + 1 4 ) ( 1 2 4 + 1 4 ) ( 1 4 + 1 4 ) ( 3 4 + 1 4 ) ( 5 4 + 1 4 ) ( 7 4 + 1 4 ) ( 9 4 + 1 4 ) ( 1 1 4 + 1 4 ) \dfrac{\left( 2^4 + \frac14\right)\left( 4^4 + \frac14\right)\left( 6^4 + \frac14\right)\left( 8^4 + \frac14\right)\left( 10^4 + \frac14\right)\left( 12^4 + \frac14\right)}{\left( 1^4 + \frac14\right)\left( 3^4 + \frac14\right)\left( 5^4 + \frac14\right)\left( 7^4 + \frac14\right)\left( 9^4 + \frac14\right)\left( 11^4 + \frac14\right)}

Prove that the number above is an integer, and find the number by simplification without actual calculation.


The answer is 313.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dimple Maniar
Feb 11, 2015

By sophie Germain identity

By using Sophie Germain Identity ,

T n = n 4 + 1 4 = [ n ( n + 1 ) + 1 2 ] [ n ( n 1 ) + 1 2 ] T_n = n^{4} + \frac{1}{4} = [n(n+1) + \frac{1}{2} ][n(n-1) + \frac{1}{2} ]

T n 1 = [ n ( n 1 ) + 1 2 ] [ ( n 1 ) ( n 2 ) + 1 2 ] T_{n-1} = [n(n-1) + \frac{1}{2} ][(n-1)(n-2) + \frac{1}{2} ]

T n T n 1 = n ( n + 1 ) + 1 2 ( n 1 ) ( n 2 ) + 1 2 \rightarrow \dfrac{T_n}{T_{n-1}} = \frac{n(n+1) + \frac{1}{2}}{(n-1)(n-2) + \frac{1}{2}}

Product is T 2 T 1 T 4 T 3 T 6 T 5 T 12 T 11 \dfrac{T_2}{T_1} \cdot \dfrac{T_4}{T_3} \cdot \dfrac{T_6}{T_5} \cdot \cdot \cdot \dfrac{T_{12}}{T_{11}}

Again T n T n 1 T n + 2 T n + 1 = n ( n + 1 ) + 1 2 ( n 1 ) ( n 2 ) + 1 2 ( n + 2 ) ( n + 3 ) + 1 2 n ( n + 1 ) + 1 2 = T n + 2 T n 1 \dfrac{T_n}{T_{n-1}} \cdot \dfrac{T_{n+2}}{T_{n+1}} = \frac{n(n+1) + \frac{1}{2}}{(n-1)(n-2) + \frac{1}{2}} \cdot \frac{(n+2)(n+3) + \frac{1}{2}}{n(n+1) + \frac{1}{2}} = \dfrac{T_{n+2}}{T_{n-1}}

T 2 T 1 T 4 T 3 T 6 T 5 T 12 T 11 = T 12 T 1 = 156 + 1 2 1 2 = 313 \rightarrow \dfrac{T_2}{T_1} \cdot \dfrac{T_4}{T_3} \cdot \dfrac{T_6}{T_5} \cdot \cdot \cdot \dfrac{T_{12}}{T_{11}} = \frac{T_{12}}{T_1} = \dfrac{156 + \frac{1}{2}}{\frac{1}{2}} = 313

A Former Brilliant Member - 6 years, 4 months ago

I posted it earlier

U Z - 6 years, 4 months ago

I don,t understand why, T(n+1) = n (n+1) + 1/2 , where T(n) = n (n+1) + 1/2 ?

Shohag Hossen - 6 years ago

Hi sis, I request you to copy the LaTex from my comment and repost it yourself .

Sorry if I was intrusive but the quality of the image was not good enough, so I had to do it .

Please bear with me ¨ \ddot\smile .

A Former Brilliant Member - 6 years, 4 months ago

Log in to reply

Thank u...

Dimple Maniar - 6 years, 4 months ago

Log in to reply

You are welcome ¨ \ddot\smile

A Former Brilliant Member - 6 years, 4 months ago

( ((n+1)^4+1/4)/((n^4+1/4)=(4 (n+1)^4+1)/(4 n^4+1)=1-4*(4n^3+6n^2+4n+1)=-16n^3+24n^2-16n-3.\
.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...