A bit of everything

Calculus Level 5

lim x [ ( ( f ( x ) + 1 ) ( 2 f ( x ) + 3 2 ) ( 4 f ( x ) + 1 ) ) 1 / 3 f ( x ) f ( x ) ] x ( x 2 f ( x ) ) \lim_{x\to\infty} \left [\dfrac{(( f(x) + 1) \left( 2f(x) + \dfrac32\right) (4f(x) + 1) )^{1/3} - f(x)}{f(x)} \right]^{x(x-2f(x))}

Let f : [ 0 , ) [ 4 , ) f: [0,\infty) \rightarrow [-4,\infty) be a function with an asymptote 2 y x + 3 = 0 2y - x+3 = 0 . Compute the limit above.


The answer is 2980.95798.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Otto Bretscher
Apr 14, 2016

The series expansion at \infty of the expression in the brackets starts with 1 + 4 3 y 1+\frac{4}{3y} so that the answer is lim y ( 1 + 4 3 y ) ( 2 y + 3 ) 3 = lim u ( 1 + 1 u ) 8 u = e 8 2980.95798 \lim_{y\to\infty}\left(1+\frac{4}{3y}\right)^{(2y+3)3}=\lim_{u\to\infty}\left(1+\frac{1}{u}\right)^{8u}=e^8\approx \boxed{2980.95798} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...