Weird function

Algebra Level 4

Consider the function f ( n ) = 4 n + 4 n 2 1 2 n + 1 + 2 n 1 f(n)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}} .

Evaluate k = 1 40 f ( k ) \displaystyle\sum_{k=1}^{40} f(k) .


The answer is 364.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rohit Ner
Aug 30, 2015

f ( n ) = 4 n + 4 n 2 1 2 n + 1 + 2 n 1 = 2 n + 1 + 2 n 1 + 2 n + 1 2 n 1 2 n + 1 + 2 n 1 = ( 2 n + 1 + 2 n 1 + 2 n + 1 2 n 1 ) ( 2 n + 1 2 n 1 ) ( 2 n + 1 + 2 n 1 ) ( 2 n + 1 2 n 1 ) = ( 2 n + 1 ) 3 2 ( 2 n 1 ) 3 2 2 \begin{aligned}f(n)&=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}\\&=\dfrac{2n+1+2n-1+\sqrt{2n+1}\sqrt{2n-1}}{\sqrt{2n+1}+\sqrt{2n-1}} \\&=\dfrac{\left( 2n+1+2n-1+\sqrt{2n+1}\sqrt{2n-1}\right)\left( \sqrt{2n+1}-\sqrt{2n-1} \right) }{\left(\sqrt{2n+1}+\sqrt{2n-1}\right)\left( \sqrt{2n+1}-{\sqrt{2n-1}} \right)}\\&=\dfrac{{(2n+1)}^{\frac{3}{2}}-{(2n-1)}^{\frac{3}{2}}}{2}\end{aligned}
k = 1 40 f ( k ) = 1 2 k = 1 40 ( 2 k + 1 ) 3 2 ( 2 k 1 ) 3 2 = 1 2 ( 81 3 2 1 3 2 ) = 1 2 ( 729 1 ) = 364 \begin{aligned}\displaystyle\sum_{k=1}^{40} f(k)&=\frac{1}{2}\displaystyle\sum_{k=1}^{40} {(2k+1)}^{\frac{3}{2}}-{(2k-1)}^{\frac{3}{2}}\\&=\frac{1}{2}\left( {81}^{\frac{3}{2}}-{1}^{\frac{3}{2}}\right)\\&=\frac{1}{2}\left( 729-1\right)\\&\huge\color{#3D99F6}{=\boxed{364}}\end{aligned}

L e t a = 2 n + 1 , b = 2 n 1 . S o a + b = 2 n + 1 + 2 n 1 , a b = 2 n + 1 2 n 1 . a b = 4 n 2 1 , a 2 = 2 n + 1 , b 2 = 2 n 1 , a 2 + b 2 = 4 n , ( a + b ) ( a b ) = 2. f ( n ) = a 2 + b 2 + a b a + b = ( a 2 + b 2 + a b ) ( a b ) ( a + b ) ( a b ) . n = 1 40 a 3 b 3 2 = 1 2 n = 1 40 ( 2 n + 1 ) 2 n + 1 1 2 n = 1 40 ( 2 n 1 ) 2 n 1 Let~a=\sqrt{2n+1},~~~~~b=\sqrt{2n-1}.\\ So~~~a+b=\sqrt{2n+1}+\sqrt{2n-1},~~~~~a-b=\sqrt{2n+1}-\sqrt{2n-1}.~~~~~ab=\sqrt{4n^2-1},\\ a^2=2n+1,~~~~~b^2=2n-1,~~~~~~~~a^2+b^2=4n,~~~~~(a+b)*(a-b)=2.\\ \implies~f(n)=\dfrac {a^2+b^2+ab } {a+b}=\dfrac {~~(a^2+b^2+ab)~*~(a-b) } {(a+b)*(a-b)}.\\ \displaystyle \sum_{n=1}^{40}\dfrac{a^3-b^3} 2=\frac 1 2 \sum_{n=1}^{40}(2n+1)*\sqrt{2n+1}-\frac 1 2 \sum_{n=1}^{40}(2n-1)*\sqrt{2n-1}\\ = 1 2 n = 1 39 ( 2 n + 1 ) 2 n + 1 + 1 2 n = 40 40 ( 2 n + 1 ) 2 n + 1 1 2 n = 1 1 ( 2 n 1 ) 2 n 1 1 2 n = 2 40 ( 2 n 1 ) 2 n 1 = 1 2 n = 1 39 ( 2 n + 1 ) 2 n + 1 + 1 2 ( 81 81 1 1 ) 1 2 n = 1 39 ( 2 n + 1 ) 2 n + 1 n = 1 40 f ( n ) = 1 2 ( 729 1 ) = 364. \displaystyle=\frac 1 2 \sum_{n=1}^{39}(2n+1)*\sqrt{2n+1}+\frac 1 2 \sum_{n=40}^{40}(2n+1)*\sqrt{2n+1}-\frac 1 2 \sum_{n=1}^{1}(2n-1)*\sqrt{2n-1}-\frac 1 2 \sum_{n=2}^{40}(2n-1)*\sqrt{2n-1}\\ \displaystyle=\frac 1 2 \sum_{n=1}^{39}(2n+1)*\sqrt{2n+1}+\frac 1 2 (81\sqrt{81}-1\sqrt1)-\frac 1 2 \sum_{n=1}^{39}(2n+1)*\sqrt{2n+1}\\ \displaystyle \sum_{n=1}^{40}f(n)=\frac 1 2*(729 - 1)=\Large~~\color{#D61F06}{364}.

Pranay Kumar
Aug 29, 2015

Mutiply by sqrt(2n+1)-sqrt(2n-1) in numerator and denominator => simplifying denominator leads to 2, simplyfying numerator leads to (2n+1)^3/2 - (2n-1)^3/2..

For summation 1 to 40 => (81^3/2-1^3/2) / 2 = 364

Moderator note:

Simple standard approach of telescoping sums.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...