Consider the function f ( n ) = 2 n + 1 + 2 n − 1 4 n + 4 n 2 − 1 .
Evaluate k = 1 ∑ 4 0 f ( k ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
L e t a = 2 n + 1 , b = 2 n − 1 . S o a + b = 2 n + 1 + 2 n − 1 , a − b = 2 n + 1 − 2 n − 1 . a b = 4 n 2 − 1 , a 2 = 2 n + 1 , b 2 = 2 n − 1 , a 2 + b 2 = 4 n , ( a + b ) ∗ ( a − b ) = 2 . ⟹ f ( n ) = a + b a 2 + b 2 + a b = ( a + b ) ∗ ( a − b ) ( a 2 + b 2 + a b ) ∗ ( a − b ) . n = 1 ∑ 4 0 2 a 3 − b 3 = 2 1 n = 1 ∑ 4 0 ( 2 n + 1 ) ∗ 2 n + 1 − 2 1 n = 1 ∑ 4 0 ( 2 n − 1 ) ∗ 2 n − 1 = 2 1 n = 1 ∑ 3 9 ( 2 n + 1 ) ∗ 2 n + 1 + 2 1 n = 4 0 ∑ 4 0 ( 2 n + 1 ) ∗ 2 n + 1 − 2 1 n = 1 ∑ 1 ( 2 n − 1 ) ∗ 2 n − 1 − 2 1 n = 2 ∑ 4 0 ( 2 n − 1 ) ∗ 2 n − 1 = 2 1 n = 1 ∑ 3 9 ( 2 n + 1 ) ∗ 2 n + 1 + 2 1 ( 8 1 8 1 − 1 1 ) − 2 1 n = 1 ∑ 3 9 ( 2 n + 1 ) ∗ 2 n + 1 n = 1 ∑ 4 0 f ( n ) = 2 1 ∗ ( 7 2 9 − 1 ) = 3 6 4 .
Mutiply by sqrt(2n+1)-sqrt(2n-1) in numerator and denominator => simplifying denominator leads to 2, simplyfying numerator leads to (2n+1)^3/2 - (2n-1)^3/2..
For summation 1 to 40 => (81^3/2-1^3/2) / 2 = 364
Simple standard approach of telescoping sums.
Problem Loading...
Note Loading...
Set Loading...
f ( n ) = 2 n + 1 + 2 n − 1 4 n + 4 n 2 − 1 = 2 n + 1 + 2 n − 1 2 n + 1 + 2 n − 1 + 2 n + 1 2 n − 1 = ( 2 n + 1 + 2 n − 1 ) ( 2 n + 1 − 2 n − 1 ) ( 2 n + 1 + 2 n − 1 + 2 n + 1 2 n − 1 ) ( 2 n + 1 − 2 n − 1 ) = 2 ( 2 n + 1 ) 2 3 − ( 2 n − 1 ) 2 3
k = 1 ∑ 4 0 f ( k ) = 2 1 k = 1 ∑ 4 0 ( 2 k + 1 ) 2 3 − ( 2 k − 1 ) 2 3 = 2 1 ( 8 1 2 3 − 1 2 3 ) = 2 1 ( 7 2 9 − 1 ) = 3 6 4