Wierd Remainder

Find the remainder when:

( k = 0 30 ( 16 + 13 k ) ) + ( i = 0 10 ( 140 13 i ) ) \left( \prod_{k=0}^{30} (16+13k) \right) + \left(\sum_{i=0}^{10}\left( 140-13i\right)\right)

Is divided by 13


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

敬全 钟
Apr 30, 2014

We separate the expression into two parts. Notice that

16 + 13 k = 13 + 3 + 13 k = 13 ( k + 1 ) + 3 3 ( m o d 13 ) 16+13k=13+3+13k=13(k+1)+3\equiv 3 \pmod{13} .

While, 140 13 i = 10 ( 13 ) + 10 13 i = 13 ( 10 i ) + 10 10 ( m o d 13 ) 140-13i=10(13)+10-13i=13(10-i)+10\equiv 10 \pmod{13} .

Thus,

k = 0 30 ( 16 + 13 k ) 3 31 ( 3 3 ) 10 × 3 1 10 × 3 3 ( m o d 13 ) \displaystyle\prod^{30}_{k=0} (16+13k) \equiv 3^{31} \equiv (3^3)^{10} \times 3 \equiv 1^{10}\times 3 \equiv 3 \pmod{13}

and

i = 0 10 ( 140 13 i ) 10 × 11 110 6 ( m o d 13 ) \displaystyle\sum^{10}_{i=0} (140-13i) \equiv 10\times 11\equiv 110\equiv 6 \pmod{13}

So, the remainder is just simply 3 + 6 = 9 3+6=\boxed{9}

It is noted that the product can be rewritten as follows:

P = k = 0 30 ( 16 + 13 k ) = k = 1 31 ( 3 + 13 k ) P = \prod_{k=0}^{30} {(16+13k)} = \prod_{k=1}^{31} {(3+13k)}

Since 3 + 13 k 3 ( m o d 13 ) 3+13k \equiv 3 \pmod {13}

P m o d 13 = 3 31 m o d 13 \Rightarrow P \mod {13} = 3^{31} \mod {13}

It can be shown that 3 n m o d 13 = 3 ( n m o d 3 ) 3 31 m o d 13 = 3 ( 31 m o d 3 ) = 3 3^n \mod {13} = 3(n \mod {3}) \Rightarrow 3^{31} \mod {13} = 3(31 \mod {3} ) = 3

Similarly, S = i = 0 10 ( 140 13 i ) = i = 0 10 ( 10 + 13 i ) S = \sum _{i=0} ^{10} { (140 - 13i) } = \sum _{i=0} ^{10} { (10 + 13i) }

S m o d 13 = 110 m o d 13 = 6 \Rightarrow S \mod {13} = 110 \mod {13} = 6

Therefore, S + P ( 3 + 6 ) ( m o d 13 ) 9 ( m o d 13 ) S+P \equiv (3+6) \pmod {13} \equiv \boxed{9} \pmod {13}

same method!!

Adarsh Kumar - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...