Wildest Equation

Algebra Level 4

Suppose that x , y x, y and z z are real numbers and y 1 y \geq 1 . Find x 2 + y 2 + z 2 \sqrt{x^2 + y^2 +z^2} such that

x + y = 1 2 x y x 1 2 y + y 2 + z 4 . \large{x+y = 1-2\sqrt{xy-x} - \sqrt{1-2y+y^2 +z^4}}.

2 5 6 1 3 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Henry Wan
Oct 22, 2015

F o r c o n v e n i e n c e , l e t y = y 1 0 , a n d n o t e t h a t x 0 ( o t h e r w i s e , x y x i s i n v a l i d ) , t h e n t h e c o n s t r a i n t b e c o m e s x + y + 2 x y = y 2 + z 4 ( x + y ) 2 = y 2 + z 4 S i n c e ( x + y ) 2 0 a n d y 2 + z 4 0 , w e h a v e ( x + y ) 2 = 0 a n d y 2 + z 4 = 0 x + y = 0 a n d y 2 + z 4 x = y = z = 0 t h e r e f o r e , x = z = 0 a n d y = 1 T h e r e q u i r e d a n s w e r i s 1 . For\quad convenience,\quad let\quad y'=y-1\ge 0,\quad and\quad note\quad that\quad x\ge 0\quad (otherwise,\quad \sqrt { xy-x } is\quad invalid),\\ then\quad the\quad constraint\quad becomes\\ x+y'+2\sqrt { xy' } =-\sqrt { { y' }^{ 2 }+{ z }^{ 4 } } \\ { \left( \sqrt { x } +\sqrt { y' } \right) }^{ 2 }=-\sqrt { { y' }^{ 2 }+{ z }^{ 4 } } \\ Since\quad { \left( \sqrt { x } +\sqrt { y' } \right) }^{ 2 }\ge 0\quad and\quad -\sqrt { { y' }^{ 2 }+{ z }^{ 4 } } \le 0,\quad we\quad have\\ { \left( \sqrt { x } +\sqrt { y' } \right) }^{ 2 }=0\quad and\quad -\sqrt { { y' }^{ 2 }+{ z }^{ 4 } } =0\\ \sqrt { x } +\sqrt { y' } =0\quad and\quad { y' }^{ 2 }+{ z }^{ 4 }\\ x=y'=z=0\\ therefore,\quad x=z=0\quad and\quad y=1\\ The\quad required\quad answer\quad is\quad \boxed { 1 } .

Bikash Kumar
Oct 15, 2015

x=0 y=1 z=0 I will give solution if anyone need.

Can you show how do you get this value :D

Paul Ryan Longhas - 5 years, 8 months ago

Log in to reply

X+2√(x(y-1)) +(y-1) =- √(1-2y+y^2+z^4 ) (√x+√((y-1))) 2+ √(〖(y-1)〗^2+z^4 )=0 For the above statement to be true. Both the terms must be equal to zero. 〖(y-1)〗^2+z^4=0 For the above statement to be true. Both the terms must be equal to zero. (y-1)=0 y=1 z=0 put value of y=1 in √x+√((y-1))) =0 and we will get, x=0 Now we can easily get the value of the sked expression.

Bikash Kumar - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...