Will Euler help?

Geometry Level 5

The distance between the incenter and centroid of a triangle having side's length a , b , c a,b,c is λ 1 ( a + b + c ) 3 λ 2 ( a 3 + b 3 + c 3 ) λ 3 a b c λ 4 ( a + b + c ) \sqrt{\frac{\lambda_1(a+b+c)^3-\lambda_2(a^3+b^3+c^3)-\lambda_3abc}{\lambda_4(a+b+c)}}

Find λ 1 + λ 2 + λ 3 + λ 4 \lambda_1+\lambda_2+\lambda_3+\lambda_4 .

Clarification:

  • λ 1 , λ 2 , λ 3 & λ 4 \lambda_1,\lambda_2,\lambda_3\ \&\ \lambda_4 are four positive integers such that gcd ( λ 1 , λ 2 , λ 3 λ 4 ) = 1 \gcd{(\lambda_1,\lambda_2,\lambda_3\,\lambda_4)}=1


The answer is 73.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Aug 3, 2018

Let the circumcentre of the triangle be the origin of coordinates. Then A , B , C A,B,C have position vectors a , b , c \mathbf{a},\mathbf{b},\mathbf{c} , all of modulus R R , the outradius, and the centroid and incentre have position vectors g = 1 3 ( a + b + c ) i = 1 a + b + c ( a a + b b + c c ) \mathbf{g} \; = \; \tfrac13(\mathbf{a} + \mathbf{b} + \mathbf{c}) \hspace{2cm} \mathbf{i} \; = \; \tfrac{1}{a+b+c}(a\mathbf{a} + b\mathbf{b} + c\mathbf{c}) so that 3 ( a + b + c ) ( g i ) = ( b + c 2 a ) a + ( a + c 2 b ) b + ( a + b 2 c ) c 3(a+b+c)(\mathbf{g} - \mathbf{i}) \; = \; (b+c-2a)\mathbf{a} + (a+c-2b)\mathbf{b} + (a + b - 2c)\mathbf{c} Note that a a = b b = c c = R 2 \mathbf{a} \cdot \mathbf{a} = \mathbf{b} \cdot \mathbf{b} = \mathbf{c} \cdot \mathbf{c} = R^2 , while a b = R 2 cos 2 C = R 2 ( 1 2 sin 2 C ) = R 2 1 2 c 2 \mathbf{a} \cdot \mathbf{b} \; = \; R^2 \cos2C \; = \; R^2(1 - 2\sin^2C) \; = \; R^2 - \tfrac12c^2 and, similarly a c = R 2 1 2 b 2 \mathbf{a} \cdot \mathbf{c} = R^2 - \tfrac12b^2 and b c = R 2 1 2 a 2 \mathbf{b} \cdot \mathbf{c} = R^2 - \tfrac12a^2 . Thus 9 ( a + b + c ) 2 g i 2 = ( b + c 2 a ) 2 R 2 + ( a + c 2 b ) 2 R 2 + ( a + b 2 c ) 2 R 2 + ( b + c 2 a ) ( a + c 2 b ) ( 2 R 2 c 2 ) + ( b + c 2 a ) ( a + b 2 c ) ( 2 R 2 b 2 ) + ( a + b 2 c ) ( a + c 2 b ) ( 2 R 2 a 2 ) = R 2 ( a + b 2 c + a + c 2 b + b + c 2 a ) 2 a 2 ( a + b 2 c ) ( a + c 2 b ) b 2 ( a + b 2 c ) ( b + c 2 a ) c 2 ( a + c 2 b ) ( b + c 2 a ) = a 2 ( a + b 2 c ) ( a + c 2 b ) b 2 ( a + b 2 c ) ( b + c 2 a ) c 2 ( a + c 2 b ) ( b + c 2 a ) = ( a + b + c ) ( ( a 3 + b 3 + c 3 ) 2 ( a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 ) + 9 a b c ) = 1 3 ( a + b + c ) [ 2 ( a + b + c ) 3 5 ( a 3 + b 3 + c 3 ) 39 a b c ] \begin{aligned} 9(a+b+c)^2\Vert \mathbf{g} - \mathbf{i}\Vert^2 & = \; \begin{array}{l} (b+c-2a)^2R^2 + (a+c-2b)^2R^2 + (a+b-2c)^2R^2 \\ {} + (b+c-2a)(a+c-2b)(2R^2 - c^2) + (b+c-2a)(a+b-2c)(2R^2 - b^2) + (a+b - 2c)(a+c-2b)(2R^2 - a^2) \end{array} \\ & = \; \begin{array}{l} R^2\big(a + b - 2c + a + c - 2b + b + c - 2a\big)^2 \\ {} - a^2(a+b-2c)(a+c-2b) - b^2(a+b-2c)(b+c-2a) - c^2(a+c-2b)(b+c-2a) \end{array} \\ & = \; - a^2(a+b-2c)(a+c-2b) - b^2(a+b-2c)(b+c-2a) - c^2(a+c-2b)(b+c-2a) \\ & = \; -(a + b + c)\Big(\big(a^3 + b^3 + c^3\big) - 2\big(a^2b + a^2c + ab^2 + b^2c + ac^2 + bc^2\big) + 9abc\Big) \\ & = \; \tfrac13(a+b+c)\big[2(a+b+c)^3 - 5(a^3 + b^3 + c^3) - 39abc\big] \end{aligned} using the identity ( a + b + c ) 3 = ( a 3 + b 3 + c 3 ) + 3 ( a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 ) + 6 a b c (a+b+c)^3 \; = \; (a^3+b^3+c^3) + 3(a^2b+a^2c+ab^2+b^2c+ac^2+bc^2) + 6abc Thus g i = 2 ( a + b + c ) 3 5 ( a 3 + b 3 + c 3 ) 39 a b c 27 ( a + b + c ) \Vert \mathbf{g} - \mathbf{i} \Vert \; = \; \sqrt{\frac{2(a+b+c)^3 - 5(a^3 + b^3 + c^3) - 39abc}{27(a+b+c)}} making the answer 2 + 5 + 39 + 27 = 73 2 + 5 + 39 + 27 = \boxed{73} .

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...