The distance between the incenter and centroid of a triangle having side's length a , b , c is λ 4 ( a + b + c ) λ 1 ( a + b + c ) 3 − λ 2 ( a 3 + b 3 + c 3 ) − λ 3 a b c
Find λ 1 + λ 2 + λ 3 + λ 4 .
Clarification:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let the circumcentre of the triangle be the origin of coordinates. Then A , B , C have position vectors a , b , c , all of modulus R , the outradius, and the centroid and incentre have position vectors g = 3 1 ( a + b + c ) i = a + b + c 1 ( a a + b b + c c ) so that 3 ( a + b + c ) ( g − i ) = ( b + c − 2 a ) a + ( a + c − 2 b ) b + ( a + b − 2 c ) c Note that a ⋅ a = b ⋅ b = c ⋅ c = R 2 , while a ⋅ b = R 2 cos 2 C = R 2 ( 1 − 2 sin 2 C ) = R 2 − 2 1 c 2 and, similarly a ⋅ c = R 2 − 2 1 b 2 and b ⋅ c = R 2 − 2 1 a 2 . Thus 9 ( a + b + c ) 2 ∥ g − i ∥ 2 = ( b + c − 2 a ) 2 R 2 + ( a + c − 2 b ) 2 R 2 + ( a + b − 2 c ) 2 R 2 + ( b + c − 2 a ) ( a + c − 2 b ) ( 2 R 2 − c 2 ) + ( b + c − 2 a ) ( a + b − 2 c ) ( 2 R 2 − b 2 ) + ( a + b − 2 c ) ( a + c − 2 b ) ( 2 R 2 − a 2 ) = R 2 ( a + b − 2 c + a + c − 2 b + b + c − 2 a ) 2 − a 2 ( a + b − 2 c ) ( a + c − 2 b ) − b 2 ( a + b − 2 c ) ( b + c − 2 a ) − c 2 ( a + c − 2 b ) ( b + c − 2 a ) = − a 2 ( a + b − 2 c ) ( a + c − 2 b ) − b 2 ( a + b − 2 c ) ( b + c − 2 a ) − c 2 ( a + c − 2 b ) ( b + c − 2 a ) = − ( a + b + c ) ( ( a 3 + b 3 + c 3 ) − 2 ( a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 ) + 9 a b c ) = 3 1 ( a + b + c ) [ 2 ( a + b + c ) 3 − 5 ( a 3 + b 3 + c 3 ) − 3 9 a b c ] using the identity ( a + b + c ) 3 = ( a 3 + b 3 + c 3 ) + 3 ( a 2 b + a 2 c + a b 2 + b 2 c + a c 2 + b c 2 ) + 6 a b c Thus ∥ g − i ∥ = 2 7 ( a + b + c ) 2 ( a + b + c ) 3 − 5 ( a 3 + b 3 + c 3 ) − 3 9 a b c making the answer 2 + 5 + 3 9 + 2 7 = 7 3 .