Will factor theorem help here?

Algebra Level 4

ζ ( γ ) = η γ 4 + δ γ 3 + 32 γ 2 17 γ + 6 \large\zeta(\gamma) = \eta\gamma^4+\delta\gamma^3+32\gamma^2-17\gamma + 6

Above shows a 4th degree polynomial ζ ( γ ) \zeta(\gamma) with constant leading term η \eta . If ( 3 γ 2 2 γ + 1 ) (3\gamma^2-2\gamma+1) divides the polynomial ζ ( γ ) \zeta(\gamma) , find the value of η + δ \eta+\delta .


Bonus : Find the other factor of ζ ( γ ) \zeta(\gamma) .


The answer is -11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using the more familiar x x and f ( x ) f(x) , we have:

f ( x ) = η x 4 + δ x 3 + 32 x 2 17 x + 6 \begin{aligned} f(x) & = \eta x^4+\delta x^3 + 32x^2-17x + 6 \end{aligned}

Since ( 3 x 2 2 x + 1 ) f ( x ) (3x^2-2x+1)|f(x) , we can assume:

f ( x ) = ( 3 x 2 2 x + 1 ) ( a x 2 + b x + c ) \begin{aligned} f(x) & = (3x^2-2x+1)(ax^2+bx+c) \end{aligned}

Comparing the coefficients, we have:

{ 3 a = η . . . ( 1 ) 3 b 2 a = δ . . . ( 2 ) a 2 b + 3 c = 32 . . . ( 3 ) b 2 c = 17 . . . ( 4 ) c = 6 . . . ( 5 ) \begin{cases} 3a & = \eta & ... (1) \\ 3b-2a & = \delta & ... (2) \\ a - 2b +3c & = 32 & ... (3) \\ b -2c & = -17 & ... (4) \\ c & = 6 & ... (5) \end{cases}

From Eq. 3: c = 6 c=6 , substituting it in Eq. 4: b = 5 \Rightarrow b = -5

Substituting b = 5 b= -5 and c = 6 c = 6 in Eq. 3: a = 4 \Rightarrow a = 4

From Eq. 1: η = 3 a = 12 \eta = 3a = 12

From Eq. 2: δ = 3 b 2 a = 23 \delta = 3b-2a = -23

Therefore, η + δ = 12 23 = 11 \eta + \delta = 12 - 23 = \boxed{-11}

Nihar Mahajan
Jun 7, 2015

We use the trick of forcing the factor.

η γ 4 + δ γ 3 + 32 γ 2 17 γ + 6 η γ 4 + δ γ 3 + 14 γ 2 + 18 γ 2 12 γ 5 γ + 6 η γ 4 + δ γ 3 + 14 γ 2 5 γ + 18 γ 2 12 γ + 6 η γ 4 + δ γ 3 + 14 γ 2 5 γ + 6 ( 3 γ 2 2 γ + 1 ) η γ 4 + ( δ + 15 ) γ 3 + 4 γ 2 15 γ 3 + 10 γ 2 5 γ + 6 ( 3 γ 2 2 γ + 1 ) η γ 4 + ( δ + 15 ) γ 3 + 4 γ 2 5 γ ( 3 γ 2 2 γ + 1 ) + 6 ( 3 γ 2 2 γ + 1 ) 4 γ 2 ( η 4 γ 2 + ( δ + 15 ) 4 γ + 1 ) 5 γ ( 3 γ 2 2 γ + 1 ) + 6 ( 3 γ 2 2 γ + 1 ) \eta\gamma^4+\delta\gamma^3+32\gamma^2-17\gamma + 6 \\ \Rightarrow \eta\gamma^4+\delta\gamma^3 +14\gamma^2+18\gamma^2-12\gamma-5\gamma+6 \\ \Rightarrow\eta\gamma^4+\delta\gamma^3+14\gamma^2-5\gamma+18\gamma^2-12\gamma+6 \\ \Rightarrow \eta\gamma^4+\delta\gamma^3+14\gamma^2-5\gamma+6(3\gamma^2-2\gamma+1) \\\Rightarrow \eta\gamma^4+(\delta+15)\gamma^3+4\gamma^2-15\gamma^3+10\gamma^2-5\gamma+6(3\gamma^2-2\gamma+1) \\ \Rightarrow\eta\gamma^4+(\delta+15)\gamma^3+4\gamma^2-5\gamma(3\gamma^2-2\gamma+1)+6(3\gamma^2-2\gamma+1) \\ \Rightarrow 4\gamma^2\left(\dfrac{\eta}{4}\gamma^2+\dfrac{(\delta+15)}{4}\gamma+1\right)-5\gamma(3\gamma^2-2\gamma+1)+6(3\gamma^2-2\gamma+1)

For ( 3 γ 2 2 γ + 1 ) ζ ( γ ) (3\gamma^2-2\gamma+1) \ | \ \zeta(\gamma) ,

η 4 γ 2 + δ + 15 4 γ + 1 = ( 3 γ 2 2 γ + 1 ) η 4 = 3 , δ + 15 4 = 2 η = 12 , δ = 23 η + δ = 12 23 = 11 \dfrac{\eta}{4}\gamma^2+\dfrac{\delta+15}{4}\gamma+1 = (3\gamma^2-2\gamma+1) \\ \Rightarrow\dfrac{\eta}{4}=3 \ , \ \dfrac{\delta+15}{4}=-2 \\ \Rightarrow \eta=12 \ , \ \delta=-23 \\ \Rightarrow \eta+\delta=12-23=\boxed{-11}

Indeed the other factor is 4 γ 2 5 γ + 6 4\gamma^2-5\gamma+6 .

Nicely done Nihar. I solved it the way Chew-Seong did. Reading your solution taught me a new idea: "forcing the factor." Thanks.

Yonah Berwaldt - 6 years ago

Log in to reply

Welcome. Upvote it if you liked it :)

Nihar Mahajan - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...