ζ ( γ ) = η γ 4 + δ γ 3 + 3 2 γ 2 − 1 7 γ + 6
Above shows a 4th degree polynomial ζ ( γ ) with constant leading term η . If ( 3 γ 2 − 2 γ + 1 ) divides the polynomial ζ ( γ ) , find the value of η + δ .
Bonus : Find the other factor of ζ ( γ ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We use the trick of forcing the factor.
η γ 4 + δ γ 3 + 3 2 γ 2 − 1 7 γ + 6 ⇒ η γ 4 + δ γ 3 + 1 4 γ 2 + 1 8 γ 2 − 1 2 γ − 5 γ + 6 ⇒ η γ 4 + δ γ 3 + 1 4 γ 2 − 5 γ + 1 8 γ 2 − 1 2 γ + 6 ⇒ η γ 4 + δ γ 3 + 1 4 γ 2 − 5 γ + 6 ( 3 γ 2 − 2 γ + 1 ) ⇒ η γ 4 + ( δ + 1 5 ) γ 3 + 4 γ 2 − 1 5 γ 3 + 1 0 γ 2 − 5 γ + 6 ( 3 γ 2 − 2 γ + 1 ) ⇒ η γ 4 + ( δ + 1 5 ) γ 3 + 4 γ 2 − 5 γ ( 3 γ 2 − 2 γ + 1 ) + 6 ( 3 γ 2 − 2 γ + 1 ) ⇒ 4 γ 2 ( 4 η γ 2 + 4 ( δ + 1 5 ) γ + 1 ) − 5 γ ( 3 γ 2 − 2 γ + 1 ) + 6 ( 3 γ 2 − 2 γ + 1 )
For ( 3 γ 2 − 2 γ + 1 ) ∣ ζ ( γ ) ,
4 η γ 2 + 4 δ + 1 5 γ + 1 = ( 3 γ 2 − 2 γ + 1 ) ⇒ 4 η = 3 , 4 δ + 1 5 = − 2 ⇒ η = 1 2 , δ = − 2 3 ⇒ η + δ = 1 2 − 2 3 = − 1 1
Indeed the other factor is 4 γ 2 − 5 γ + 6 .
Nicely done Nihar. I solved it the way Chew-Seong did. Reading your solution taught me a new idea: "forcing the factor." Thanks.
Problem Loading...
Note Loading...
Set Loading...
Using the more familiar x and f ( x ) , we have:
f ( x ) = η x 4 + δ x 3 + 3 2 x 2 − 1 7 x + 6
Since ( 3 x 2 − 2 x + 1 ) ∣ f ( x ) , we can assume:
f ( x ) = ( 3 x 2 − 2 x + 1 ) ( a x 2 + b x + c )
Comparing the coefficients, we have:
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ 3 a 3 b − 2 a a − 2 b + 3 c b − 2 c c = η = δ = 3 2 = − 1 7 = 6 . . . ( 1 ) . . . ( 2 ) . . . ( 3 ) . . . ( 4 ) . . . ( 5 )
From Eq. 3: c = 6 , substituting it in Eq. 4: ⇒ b = − 5
Substituting b = − 5 and c = 6 in Eq. 3: ⇒ a = 4
From Eq. 1: η = 3 a = 1 2
From Eq. 2: δ = 3 b − 2 a = − 2 3
Therefore, η + δ = 1 2 − 2 3 = − 1 1