Will it be odd?

Find the Last two digit of 9 7 5 3 + 1 \huge 9^{7^{5^{3}}} + 1

Try Easier version


The answer is 70.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Jun 9, 2017

9 n m o d 100 \large \displaystyle 9^n \ mod \ 100 , for n N n \in \mathbf{N} , follows:

{ 1 , 9 , 81 , 29 , 61 , 49 , 41 , 69 , 21 , 89 } \large \displaystyle \{ 1, 9, 81, 29, 61, 49, 41, 69, 21, 89\}

That is:

9 n m o d 100 = 1 if n m o d 10 = 0 \large \displaystyle 9^n \ mod \ 100 = 1 \ \text{if} \ n \ mod \ 10 = 0

9 n m o d 100 = 9 if n m o d 10 = 1 \large \displaystyle 9^n \ mod \ 100 = 9 \ \text{if} \ n \ mod \ 10 = 1

9 n m o d 100 = 81 if n m o d 10 = 2 \large \displaystyle 9^n \ mod \ 100 = 81 \ \text{if} \ n \ mod \ 10 = 2

9 n m o d 100 = 29 if n m o d 10 = 3 \large \displaystyle 9^n \ mod \ 100 = 29 \ \text{if} \ n \ mod \ 10 = 3

9 n m o d 100 = 61 if n m o d 10 = 4 \large \displaystyle 9^n \ mod \ 100 = 61 \ \text{if} \ n \ mod \ 10 = 4

9 n m o d 100 = 49 if n m o d 10 = 5 \large \displaystyle 9^n \ mod \ 100 = 49 \ \text{if} \ n \ mod \ 10 = 5

9 n m o d 100 = 41 if n m o d 10 = 6 \large \displaystyle 9^n \ mod \ 100 = 41 \ \text{if} \ n \ mod \ 10 = 6

9 n m o d 100 = 69 if n m o d 10 = 7 \large \displaystyle 9^n \ mod \ 100 = 69 \ \text{if} \ n \ mod \ 10 = 7

9 n m o d 100 = 21 if n m o d 10 = 8 \large \displaystyle 9^n \ mod \ 100 = 21 \ \text{if} \ n \ mod \ 10 = 8

9 n m o d 100 = 91 if n m o d 10 = 9 \large \displaystyle 9^n \ mod \ 100 = 91 \ \text{if} \ n \ mod \ 10 = 9

Since the exponent is a multiple of 7 7 , the last two digits of 9 7 5 3 9^{7^{5^3}} will be 69 69 . Plus 1 1 , the last two digits will be 70 \color{#3D99F6} \boxed{70} .

@Guilherme Niedu well you don't have to calculate every power. There is a shorter method

Ravneet Singh - 4 years ago

Log in to reply

Yes, I just want to show that powers of 9 have a pattern

Guilherme Niedu - 4 years ago

what is the shorter method?

Achal Jain - 4 years ago

Log in to reply

I dont know. @Ravneet Singh Show us the shorter method.

. . - 3 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...