Will it grow or decline?

Calculus Level 3

lim x ( 0. 9 ) x \Large \displaystyle \lim_{x \rightarrow \infty} (0.\overline{9})^x

None of these Not defined 1 1 0 0 \infty

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The first thing is to prove that the notation 0. 9 \displaystyle 0.\overline { 9 } is "exactly" 1.

Consider 1 3 = 0. 3 \displaystyle \frac { 1 }{ 3 }= 0.\overline { 3 }

3 × 1 3 = 3 × 0. 3 = 3 × 0.3333333333... = 0.9999999999... = 0. 9 \displaystyle 3 \times \frac { 1 }{ 3 }= 3 \times 0.\overline { 3 } =3 \times 0.3333333333...=0.9999999999...=0.\overline { 9 }

Since 3 × 1 3 = 1 \displaystyle 3 \times \frac { 1 }{ 3 }= 1

3 × 1 3 = 1 = 0. 9 \displaystyle 3 \times \frac { 1 }{ 3 } =1= 0.\overline { 9 }

Then

lim x ( 0. 9 ) x = lim x ( 1 ) x = 1 \displaystyle \lim _{ x\rightarrow \infty }{ \left( 0.\overline { 9 } \right)^{ x } } = \lim _{ x\rightarrow \infty }{ \left( 1 \right)^{ x } }=1

Let α = 0. 9 = lim n r = 1 n 9 1 0 r = lim n ( 1 1 0 n ) = 1 \alpha=0.\overline{9}=\lim_{n\rightarrow\infty}\sum_{r=1}^n\frac{9}{10^r}=\lim_{n\rightarrow\infty}\left(1-10^{-n}\right)=1

Then, required limit lim n x n \lim_{n\rightarrow\infty}x_n where x n = α n = 1 n = 1 x_n=\alpha^n=1^n=1 .

Hence, x n x_n is a constant sequence. So, lim n x n = 1 \lim_{n\rightarrow\infty}x_n=\boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...