Will that be a constant?

Geometry Level 4

Let Γ \Gamma be a circle with radius r r . Let A A be any point on Γ \Gamma and let t t be the tangent to Γ \Gamma at point A A . Let B B and C C be points of t t on opposite sides of A A such that A B = 12 r AB = 12r and A C = 24 r AC = 24r . Let P P be any point of Γ \Gamma different from A A . Find the value of:

1 cot A P B + cot A P C \large{\dfrac{1}{\cot \angle APB +\cot \angle APC}}


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Paul Walter
Aug 10, 2015

Without loss of generality let r r be a unit (rescaling does not change trigonometric ratios) and let us introduce coordinates, such that the centre of Γ = ( 0 , 0 ) \Gamma = (0,0) , and A = ( 1 , 0 ) A = (1, 0) . Then we have B = ( 1 , 12 ) , C = ( 1 , 24 ) B = (1, -12), \ C = (1, 24) .

P P lies on the unit circle, so if its coordinates are ( x , y ) (-x,-y) , then x 2 + y 2 = 0 x^2+y^2=0 .

P B = ( x + 1 , y 12 ) \vec{PB}=(x+1, y-12) ; P A = ( x + 1 , y ) \vec{PA}=(x+1, y) and P C = ( x + 1 , y + 24 ) \vec{PC}=(x+1, y+24) .

cos A P B = P B P A P B × P A = ( x + 1 ) 2 + y ( y 12 ) d \cos \angle APB = \frac{\vec{PB} \cdot \vec{PA}}{|\vec{PB}| \times |\vec{PA}|} = \frac{(x+1)^2 + y(y-12)}{d} , where

d = ( ( x + 1 ) 2 + ( y 12 ) 2 ) ( ( x + 1 ) 2 + y 2 ) = d = \sqrt{((x+1)^2+(y-12)^2)((x+1)^2+y^2)} =

= ( x + 1 ) 4 + ( x + 1 ) 2 ( y 2 + ( y 12 ) 2 ) + y 2 ( y 12 ) 2 = \sqrt{(x+1)^4 + (x+1)^2 (y^2 + (y-12)^2) + y^2 (y-12)^2} .

Now cos 2 A P B = ( x + 1 ) 4 + y 2 ( y 12 ) 2 + 2 ( x + 1 ) 2 y ( y 12 ) d 2 \cos^2 \angle APB = \frac{(x+1)^4 + y^2(y-12)^2 + 2 (x+1)^2y(y-12)}{d^2} , so

sin 2 A P B = 1 cos 2 A P B = \sin^2 \angle APB = 1 - \cos^2 \angle APB =

= d 2 ( x + 1 ) 4 y 2 ( y 12 ) 2 2 ( x + 1 ) 2 y ( y 12 ) d 2 = = \frac{d^2 - (x+1)^4 - y^2(y-12)^2 - 2 (x+1)^2y(y-12)}{d^2} =

= ( x + 1 ) 2 ( y 2 + ( y 12 ) 2 2 y ( y 12 ) ) d 2 = = \frac{(x+1)^2 (y^2 + (y-12)^2 - 2y(y-12))}{d^2} =

= ( x + 1 ) 2 ( y ( y 12 ) ) 2 d 2 = 144 ( x + 1 ) 2 d 2 = \frac{(x+1)^2 (y - (y - 12))^2}{d^2} = \frac{144 (x+1)^2}{d^2} ,

hence sin A P B = 12 ( x + 1 ) d \sin \angle APB = \frac{12(x+1)}{d} and so

cot A P B = cos A P B sin A P B = ( x + 1 ) 2 + y ( y 12 ) 12 ( x + 1 ) \cot \angle APB = \frac{\cos \angle APB}{\sin \angle APB} = \frac{(x+1)^2 + y(y-12)}{12(x+1)} .

Analogically (replacing -12 by 24 everywhere), we see that

cot A P C = ( x + 1 ) 2 + y ( y + 24 ) 24 ( x + 1 ) \cot \angle APC = \frac{(x+1)^2 + y(y+24)}{24(x+1)} .

Hence the fraction in questions is equal to:

( ( x + 1 ) 2 + y ( y + 24 ) 24 ( x + 1 ) + ( x + 1 ) 2 + y ( y 12 ) 12 ( x + 1 ) ) 1 = (\frac{(x+1)^2 + y(y+24)}{24(x+1)} + \frac{(x+1)^2 + y(y-12)}{12(x+1)})^{-1} =

= ( ( ( x + 1 ) 2 + y ( y + 24 ) + 2 ( x + 1 ) 2 + 2 y ( y 12 ) 24 ( x + 1 ) ) 1 = =(\frac{((x+1)^2 + y(y+24) + 2(x+1)^2 + 2y(y-12) }{24(x+1)})^{-1} =

= 24 ( x + 1 ) 3 x 2 + 3 y 2 + 6 x + 3 =\frac{24(x+1)}{3x^2 + 3y^2 + 6x + 3} .

Note that x 2 + y 2 = 1 x^2 + y^2 = 1 as P P lies on the unit circle, hence the expression above is:

24 ( x + 1 ) 3 + 6 x + 3 = 24 ( x + 1 ) 6 ( x + 1 ) = 4 \frac{24(x+1)}{3 + 6x + 3} = \frac{24(x+1)}{6(x+1)} = 4 .

Bashed it!

Satyajit Mohanty - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...