Will the answer change?

Calculus Level 5

lim n cos ( π n 2 + n 2 ) \large \lim_{n \to \infty} \left | \cos\left( \dfrac{\pi \sqrt{n^2+n}}{2} \right) \right |

What is the value of the limit above for integers n n ? Give your answer up to 3 decimal places.

Submit 12345 12345 as the answer if the limit does not exist.

Title of the problem given in reference to the problem : limits


The answer is 0.707.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Verma
Apr 24, 2015

l i m n cos ( π n 2 + n 2 ) = ? b u t , n 2 + n = n ( 1 + 1 n ) 1 / 2 n 2 + n = n ( 1 + 1 2 n 1 8 n 2 + . . . ) = ( n + 1 2 1 8 n + . . . ) s o f o r n , n 2 + n w i l l b e a l m o s t ( n + 1 2 ) l i m n cos ( π n 2 + n 2 ) = l i m n cos ( π ( n + 1 2 ) 2 ) = l i m n cos ( n π 2 + π 4 ) = l i m n ± sin π 4 = 1 2 = 0.707 { lim }_{ n\rightarrow \infty }\left| \cos { \left( \cfrac { \pi \sqrt { { n }^{ 2 }+n } }{ 2 } \right) } \right| =?\\ \\ but,\quad \sqrt { { n }^{ 2 }+n } =n{ \left( 1+\cfrac { 1 }{ { n } } \right) }^{ 1/2 }\\ \\ \sqrt { { n }^{ 2 }+n } =n\left( 1+\cfrac { 1 }{ { 2n } } -\cfrac { 1 }{ 8{ n }^{ 2 } } +... \right) =\left( n+\cfrac { 1 }{ 2 } -\cfrac { 1 }{ 8n } +... \right) \\ \\ so\quad for\quad n\rightarrow \infty ,\quad \sqrt { { n }^{ 2 }+n } \quad will\quad be\quad almost\quad \quad \left( n+\cfrac { 1 }{ 2 } \right) \\ \\ \therefore \quad { lim }_{ n\rightarrow \infty }\left| \cos { \left( \cfrac { \pi \sqrt { { n }^{ 2 }+n } }{ 2 } \right) } \right| ={ lim }_{ n\rightarrow \infty }\left| \cos { \left( \cfrac { \pi \left( n+\cfrac { 1 }{ 2 } \right) }{ 2 } \right) } \right| \\ \\ ={ lim }_{ n\rightarrow \infty }\left| \cos { \left( \cfrac { n\pi }{ 2 } +\cfrac { \pi }{ 4 } \right) } \right| ={ lim }_{ n\rightarrow \infty }\left| \pm \sin { \cfrac { \pi }{ 4 } } \right| =\cfrac { 1 }{ \sqrt { 2 } } =0.707

Moderator note:

For clarity, you should elaborate on why you pick only the first two terms of the expansion ( 1 + 1 n ) 1 2 \left ( 1 + \frac 1 n \right )^{\frac 1 2 } .

I think we can also do this by binomial approximation.Since n tends to infinity therefore 1/n tends to 0.Therefore,(1+1/n)^1/2 = 1+1/2n and we can proceed further without using multinomial theorem i guess.

Swayam Prakash Kar - 8 months, 3 weeks ago
Priyesh Pandey
Apr 28, 2015

How could it be on 5th lvl

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...