Will the ILATE rule work?

Calculus Level 5

1 3 1 3 x 4 1 x 4 cos 1 ( 2 x 1 + x 2 ) d x \large \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}}\frac{x^{4}}{1-x^{4}}\cos^{-1}\left(\frac{2x}{1+x^{2}}\right)dx The closed form of the integral above is of the form π 2 a π b π c ln ( b 1 b + 1 ) \displaystyle \frac{\pi ^{2}}{a}-\frac{\pi }{\sqrt{b}}-\frac{\pi }{c}\ln \left(\frac{\sqrt{b}-1}{\sqrt{b}+1}\right) .

Find the value of a + b + c a+b+c .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 5, 2017

With the substitution x = tan 1 2 θ x = \tan\tfrac12\theta we have I = 1 3 1 3 x 4 1 x 4 cos 1 ( 2 x 1 + x 2 ) d x = 1 3 1 3 x 4 1 x 2 cos 1 ( 2 x 1 + x 2 ) d x 1 + x 2 = 1 3 1 3 ( 1 1 x 2 x 2 1 ) cos 1 ( 2 x 1 + x 2 ) d x 1 + x 2 = 1 2 1 3 π 1 3 π ( cos 2 1 2 θ cos θ sec 2 1 2 θ ) cos 1 ( sin θ ) d θ = 1 2 1 3 π 1 3 π ( 1 2 + 1 2 sec θ sec 2 1 2 θ ) ( 1 2 π θ ) d θ \begin{aligned} I \; = \; \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{x^4}{1-x^4} \cos^{-1}\left(\frac{2x}{1+x^2}\right)\,dx & = \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{x^4}{1-x^2} \cos^{-1}\left(\frac{2x}{1+x^2}\right)\,\frac{dx}{1+x^2} \\ & = \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \left(\frac{1}{1-x^2} - x^2 - 1\right) \cos^{-1}\left(\frac{2x}{1+x^2}\right)\,\frac{dx}{1+x^2} \\ & = \tfrac12\int_{-\frac13\pi}^{\frac13\pi}\left(\frac{\cos^2\tfrac12\theta}{\cos\theta} - \sec^2\tfrac12\theta\right) \cos^{-1}(\sin\theta)\,d\theta \\ & = \tfrac12\int_{-\frac13\pi}^{\frac13\pi} \left(\tfrac12 + \tfrac12\sec\theta - \sec^2\tfrac12\theta\right)\big(\tfrac12\pi - \theta\big)\,d\theta \end{aligned} By symmetry we see that I = 1 4 π 1 3 π 1 3 π ( 1 2 + 1 2 sec θ sec 2 1 2 θ ) d θ = 1 4 π [ 1 2 θ + 1 2 ln ( sec θ + tan θ ) 2 tan 1 2 θ ] 1 3 π 1 3 π = 1 4 π [ ( 1 6 π + 1 2 ln ( 2 + 3 ) 2 3 ) ( 1 6 π + 1 2 ln ( 2 3 ) + 2 3 ) ] = 1 4 π [ 1 3 π 4 3 + 1 2 ln ( 2 + 3 2 3 ) ] = 1 12 π 2 π 3 1 4 π ln ( 3 1 3 + 1 ) \begin{aligned} I & = \tfrac14\pi\int_{-\frac13\pi}^{\frac13\pi}\left(\tfrac12 + \tfrac12\sec\theta - \sec^2\tfrac12\theta\right)\,d\theta \\ & = \tfrac14\pi \Big[\tfrac12\theta + \tfrac12\ln(\sec\theta + \tan\theta) - 2\tan\tfrac12\theta \Big]_{-\frac13\pi}^{\frac13\pi} \\ & = \tfrac14\pi \Big[\big(\tfrac16\pi + \tfrac12\ln(2 + \sqrt{3}) - \tfrac{2}{\sqrt{3}}\big) - \big(-\tfrac16\pi + \tfrac12\ln(2 - \sqrt{3}) + \tfrac{2}{\sqrt{3}}\big)\Big] \\ & = \tfrac14\pi \Big[\tfrac13\pi - \tfrac{4}{\sqrt{3}} + \tfrac12\ln \left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right)\Big] \\ & = \tfrac{1}{12}\pi^2 - \tfrac{\pi}{\sqrt{3}} - \tfrac14\pi\ln\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right) \end{aligned} making the answer 12 + 3 + 4 = 19 12 + 3 + 4 = \boxed{19} .

Good approach!!. Another method to solve this problem is to replace the cos inverse term with (pi/2) - sin inverse of that. By expanding brackets we get two functions , one having the sin inverse term will get zero as it is an odd function, the other function can be easily evaluated using standard integrals.

Aaron Jerry Ninan - 4 years, 4 months ago

Log in to reply

You are applying symmetry (oddness) and then integrating. I substituted first. Not a lot of difference, since the tan 1 2 θ \tan\tfrac12\theta substitution is definitely part of the standard integral armoury.

Mark Hennings - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...