Will You Find the 100th Power Sum Formula?

Calculus Level 3

lim n 1 100 + 2 100 + 3 100 + 4 100 + + n 100 n 101 = A B \large \lim_{n \to \infty} \frac{1^{100} + 2^{100} + 3^{100} + 4^{100} +\cdots +n^{100}}{n^{101}} = \frac{A}{B} .

If A A and B B are coprime positive integers, find A + B A+B .


The answer is 102.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Using Riemann sums , the given limit is

lim n 1 n k = 1 n ( k n ) 100 = 0 1 x 100 d x = ( x 101 101 ) 0 1 = 1 101 \displaystyle\lim_{n \to \infty} \dfrac{1}{n}\sum_{k=1}^{n}\left(\dfrac{k}{n}\right)^{100} = \int_{0}^{1} x^{100} dx = \left(\dfrac{x^{101}}{101}\right)_{0}^{1} = \dfrac{1}{101} . Thus A + B = 1 + 101 = 102 A + B = 1 + 101 = \boxed{102} .

Way more elegant than mine! (+1)

Guilherme Niedu - 4 years, 1 month ago

That's more efficient. I did the same.

Rajdeep Ghosh - 4 years ago
Guilherme Niedu
Apr 24, 2017

It is possible to have an idea of what a summation to the 10 0 t h 100^{th} power looks like, by doing:

1 101 = ( 1 + 0 ) 101 = C 0 101 0 101 + C 1 101 0 100 + C 2 101 0 99 + . . . + C 100 101 0 1 + C 101 101 \large \displaystyle 1^{101} = (1+0)^{101} = C_{0}^{101} 0^{101} + C_{1}^{101} 0^{100} + C_{2}^{101} 0^{99} + ... + C_{100}^{101} 0^{1} + C_{101}^{101}

2 101 = ( 1 + 1 ) 101 = C 0 101 1 101 + C 1 101 1 100 + C 2 101 1 99 + . . . + C 100 101 1 1 + C 101 101 \large \displaystyle 2^{101} = (1+1)^{101} = C_{0}^{101} 1^{101} + C_{1}^{101} 1^{100} + C_{2}^{101} 1^{99} + ... + C_{100}^{101} 1^{1} + C_{101}^{101}

3 101 = ( 1 + 2 ) 101 = C 0 101 2 101 + C 1 101 2 100 + C 2 101 2 99 + . . . + C 100 101 2 1 + C 101 101 \large \displaystyle 3^{101} = (1+2)^{101} = C_{0}^{101} 2^{101} + C_{1}^{101} 2^{100} + C_{2}^{101} 2^{99} + ... + C_{100}^{101} 2^{1} + C_{101}^{101}

\large \displaystyle \vdots

( 1 + n ) 101 = C 0 101 n 101 + C 1 101 n 100 + C 2 101 n 99 + . . . + C 100 101 n 1 + C 101 101 \large \displaystyle (1+n)^{101} = C_{0}^{101} n^{101} + C_{1}^{101} n^{100} + C_{2}^{101} n^{99} + ... + C_{100}^{101} n^{1} + C_{101}^{101}

Summing up all the equations above, each term in the L.H.S. will cancel out with the first term on the R.H.S. of the next equation. What will remain is:

( 1 + n ) 101 = C 1 101 k = 1 n k 100 + C 2 101 k = 1 n k 99 + . . . + C 100 101 k = 1 n k + C 101 101 k = 1 n 1 \large \displaystyle (1+n)^{101} = C_{1}^{101} \sum_{k = 1}^n k^{100} + C_{2}^{101} \sum_{k = 1}^n k^{99} + ... + C_{100}^{101} \sum_{k = 1}^n k + C_{101}^{101} \sum_{k = 1}^n 1

n 101 + O ( n 100 ) = C 1 101 k = 0 n k 100 + C 2 101 k = 0 n k 99 + . . . + C 100 101 k = 0 n k + C 101 101 k = 0 n 1 \large \displaystyle n^{101} + O(n^{100}) = C_{1}^{101} \sum_{k = 0}^n k^{100} + C_{2}^{101} \sum_{k = 0}^n k^{99} + ... + C_{100}^{101} \sum_{k = 0}^n k + C_{101}^{101} \sum_{k = 0}^n 1

n 101 + O ( n 100 ) = C 1 101 k = 1 n k 100 + C 2 101 k = 1 n k 99 + . . . + C 100 101 k = 1 n k + C 101 101 k = 0 n 1 \large \displaystyle n^{101} + O(n^{100}) = C_{1}^{101} \sum_{k = 1}^n k^{100} + C_{2}^{101} \sum_{k = 1}^n k^{99} + ... + C_{100}^{101} \sum_{k = 1}^n k + C_{101}^{101} \sum_{k = 0}^n 1

Since a sum from 1 1 to n n with each term to the a t h a^{th} power has order a + 1 a+1 :

n 101 + O ( n 100 ) = 101 k = 1 n k 100 + O ( n 100 ) \large \displaystyle n^{101} + O(n^{100}) = 101 \sum_{k = 1}^n k^{100} + O(n^{100})

k = 1 n k 100 = n 101 101 + O ( n 100 ) \color{#20A900} \boxed{\large \displaystyle \sum_{k = 1}^n k^{100} = \frac{n^{101}}{101} + O(n^{100}) }

So:

lim n 1 100 + 2 100 + 3 100 + . . . + n 100 n 101 \large \displaystyle \lim _{n \to \infty} \frac{1^{100} + 2^{100} + 3^{100} + ... + n^{100}}{n^{101}}

= lim n n 101 101 + O ( n 100 ) n 101 \large \displaystyle = \lim _{n \to \infty} \frac{ \frac{n^{101}}{101} + O(n^{100})}{n^{101}}

= 1 101 \color{#20A900} =\boxed{\large \displaystyle \frac{1}{101} }

So:

A = 1 , B = 101 , A + B = 102 \color{#3D99F6} \large \displaystyle A=1, B = 101, \boxed{\large \displaystyle A+B = 102}

Swapnil Vatsal
Jun 2, 2017

It is a pattern which i found for such problems. Every nth degree sum has its value as1/(n+1)x. The question above is clear example. Any proof in simple words will be greatly appreciated.

I used Faulhaber's Formula .

It says that the sum of the p t h p^{th} powers of the first n n natural numbers can be written as a ( p + 1 ) t h (p+1)^{th} degree polynomial function of n n .

k = 1 n k p = 1 p + 1 i = 0 p ( 1 ) i ( p + 1 i ) B i n p + 1 i \displaystyle \large \sum _{k=1}^nk^p=\frac{1}{p+1}\sum _{i=0}^p\left(-1\right)^i\binom{p+1}{i}B_i n^{p+1-i} , where B i B_i denotes the i t h i^{th} Bernoulli Number .

For our case, p = 100 p=100 :

1 101 i = 0 p ( 1 ) i ( 101 i ) B i n 101 i \displaystyle \large \frac{1}{101}\sum _{i=0}^p\left(-1\right)^i\binom{101}{i}B_i n^{101-i}

Now since n n \rightarrow \infty , terms with degree lesser than 101 will approach 0. ( n k n 101 = n k 101 \frac{n^k}{n^{101}} = n^{k-101} will converge to 0 if k < 101 k<101 ).

So, only the first term will survive.

lim n 1 101 ( 1 ) 0 ( 101 0 ) B 0 n 101 0 n 101 = 1 101 ( 1 ) 0 ( 101 0 ) B 0 = 1 101 1 1 1 = 1 101 \displaystyle \large \lim_{n \to \infty} \frac{1}{101}\frac{\left(-1\right)^0\binom{101}{0}B_0 n^{101-0}}{n^{101}} = \frac{1}{101} (-1)^0 \binom{101}{0} B_0 = \frac{1}{101} \cdot 1 \cdot 1 \cdot 1 = \boxed{\frac{1}{101}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...