Will you find the value of roots?

Geometry Level 5

If the cubic polynomial whose roots are cos ( 2 π 7 ) , cos ( 4 π 7 ) \cos \left( \dfrac{2\pi}7 \right),\cos \left( \dfrac{4\pi}7 \right) and cos ( 6 π 7 ) \cos \left( \dfrac{6\pi}7 \right) is of the form a b x 3 + a c x 2 a d x 1 , a^b x^3 + a^c x^2 - a^d x - 1 \; , where a , b , c a,b,c and d d are primes , find a + b + c + d a+b+c+d .

Hint :

z 2 n + 1 1 = ( z 1 ) k = 1 n ( z 2 2 cos 2 π k 2 n + 1 z + 1 ) {z^{2n+1}-1 =(z-1) \cdot \prod_{k=1}^{n}\left(z^{2}-2 \cdot \cos \dfrac{2\pi k}{2n+1}z +1 \right) }


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Consider z 7 = 1 z^7=1 which has roots z k = cis ( 2 π k 7 ) z_k=\text{cis}\left(\frac{2 \pi k}{7}\right) for k { 0 , 1 , 2 , 3 , 4 , 5 , 6 } k\in\{0,1,2,3,4,5,6\} . Then z 6 + z 5 + + z + 1 = 0 z^6+z^5+\cdots+z+1=0 has roots z k = cis ( 2 π k 7 ) z_k=\text{cis}\left(\frac{2 \pi k}{7}\right) for k { 1 , 2 , 3 , 4 , 5 , 6 } k\in\{1,2,3,4,5,6\} . Divide both sides by z 3 z^3 to get z 3 + 1 z 3 + z 2 + 1 z 2 + z + 1 z + 1 = 0 z^3+\frac{1}{z^3}+z^2+\frac{1}{z^2}+z+\frac{1}{z}+1=0 . With some algebra we get ( z + 1 z ) 3 + ( z + 1 z ) 2 2 ( z + 1 z ) 1 = 0 \left(z+\frac{1}{z}\right)^3+\left(z+\frac{1}{z}\right)^2-2\left(z+\frac{1}{z}\right)-1=0 . But y k = z k + 1 z k = 2 cos ( 2 π k 7 ) y_k=z_k+\frac{1}{z_k}=2\cos\left(\frac{2 \pi k}{7}\right) . Note that for the six values of k k we only get three different values of y y , then the equation in y y must be of 3rd degree: y 3 + y 2 2 y 1 = 0 y^3+y^2-2y-1=0 . Finally make y = 2 x y=2x to obtain 8 x 3 + 4 x 2 4 x 1 = 0 8x^3+4x^2-4x-1=0 , the answer follows inmediatly and it's 9 \boxed{9} .

Aditya Sky
Mar 31, 2016

As z 2 n + 1 1 = ( z 1 ) k = 1 n ( z 2 2 cos 2 π k 2 n + 1 z + 1 ) \color{#20A900}{z^{2n+1}-1\,=\,(z-1) \cdot \large \prod_{k=1}^{n}\left(z^{2}-2 \cdot \cos \frac{2\pi k}{2n+1}z +1 \right) } , therefore z 7 1 = z 2 3 + 1 1 = ( z 1 ) ( z 2 2 cos 2 π 7 z + 1 ) ( z 2 2 cos 4 π 7 z + 1 ) ( z 2 2 cos 6 π 7 z + 1 ) z^{7}-1\,=\,z^{2 \cdot 3\,+\,1}-1\,=\,(z-1)\left( z^{2} - 2\cdot \cos\frac{2\pi}{7}\,z + 1\right )\left( z^{2} - 2\cdot \cos\frac{4\pi}{7}\,z + 1\right )\left( z^{2} - 2\cdot \cos\frac{6\pi}{7}\,z + 1\right ) Also, z 7 1 = ( z 1 ) ( 1 + z + z 2 + z 3 + z 4 + z 5 + z 6 ) \color{#D61F06}{z^{7}-1\,=\,(z-1)(1+z+z^{2}+z^{3}+z^{4}+z^{5}+z^{6})} . So, 1 + z + z 2 + z 3 + z 4 + z 5 + z 6 = ( z 2 2 cos 2 π 7 z + 1 ) ( z 2 2 cos 4 π 7 z + 1 ) ( z 2 2 cos 6 π 7 z + 1 ) 1+z+z^{2}+z^{3}+z^{4}+z^{5}+z^{6}\,=\, \left(z^{2}-2 \cdot \cos\frac{2\pi}{7} z+ 1\right)\left(z^{2}-2 \cdot \cos\frac{4\pi}{7}z + 1\right)\left(z^{2}-2 \cdot \cos\frac{6\pi}{7}z + 1\right) On dividing the entire equation by z 3 z^{3} , we get :- ( z 3 + 1 z 3 ) + ( z 2 + 1 z 2 ) + ( z + 1 z ) + 1 = ( z 2 cos 2 π 7 + 1 z ) ( z 2 cos 4 π 7 + 1 z ) ( z 2 cos 6 π 7 + 1 z ) \color{magenta}{\left( z^{3} + \frac{1}{z^{3}}\right) \,+\, \left( z^{2} + \frac{1}{z^{2}}\right) \,+\, \left( z + \frac{1}{z}\right) \,+\, 1 \,=\, \left(z-2 \cdot \cos\frac{2\pi}{7} + \frac{1}{z}\right)\left(z-2 \cdot \cos\frac{4\pi}{7} + \frac{1}{z}\right)\left(z-2 \cdot \cos\frac{6\pi}{7} + \frac{1}{z}\right) } Say z + 1 z = t z+\frac{1}{z}\,=\,t , then z 2 + 1 z 2 = t 2 2 z^{2}+\frac{1}{z^{2}}\,=\,t^{2}-2 and z 3 + 1 z 3 = t 3 3 t z^{3}+\frac{1}{z^{3}}\,=\,t^{3}-3t . On putting these values in above equation, we get:- t 3 + t 2 2 t 1 = ( t 2 cos 2 π 7 ) ( t 2 cos 4 π 7 ) ( t 2 cos 6 π 7 ) \color{emerald}{t^{3}+t^{2}-2t-1 \,=\, \left(t - 2 \cdot \cos\frac{2\pi}{7}\right)\left(t - 2 \cos\cdot \frac{4\pi}{7}\right)\left(t - 2 \cdot \cos\frac{6\pi}{7}\right)} On dividing the entire equation by 8 8 , we get :- ( t 2 ) 3 + 1 2 ( t 2 ) 2 1 2 ( t 2 ) 1 8 = ( t 2 cos 2 π 7 ) ( t 2 cos 4 π 7 ) ( t 2 cos 6 π 7 ) \color{#D61F06}{\left(\frac{t}{2}\right)^{3}\,+\, \frac{1}{2} \left(\frac{t}{2}\right)^{2}\,-\,\frac{1}{2}\left(\frac{t}{2}\right)\,-\,\frac{1}{8} \,=\, \left(\frac{t}{2} - \cos\frac{2\pi}{7}\right)\left(\frac{t}{2} - \cos\frac{4\pi}{7}\right)\left(\frac{t}{2} - \cos\frac{6\pi}{7}\right)} Say t 2 = x \frac{t}{2}\,=\,x , then we have :- x 3 + 1 2 x 2 1 2 x 1 8 = ( x cos 2 π 7 ) ( x cos 4 π 7 ) ( x cos 6 π 7 ) \color{#20A900}{x^{3}\,+\,\frac{1}{2}x^{2}\,-\,\frac{1}{2}x\,-\,\frac{1}{8} \,=\, \left(x - \cos\frac{2\pi}{7}\right)\left(x -\cos\frac{4\pi}{7}\right)\left(x - \cos \frac{6\pi}{7}\right)} . So required equation is :- x 3 + 1 2 x 2 1 2 x 1 8 = 0 \large \color{farkorange}{x^{3}\,+\,\frac{1}{2}x^{2}\,-\,\frac{1}{2}x\,-\,\frac{1}{8} \,=0} . 8 x 3 + 4 x 2 4 x 1 = 0 \huge \color{#3D99F6}{\boxed {8x^{3}+4x^{2}-4x-1\,=\,0}} . Hence, a = c = d = 2 , b = 3 \color{#69047E}{a=c=d=2 \,,\, b=3} . So, a + b + c + d = 2 + 3 + 2 + 2 = 9 \color{#69047E}{a+b+c+d\,=\,2+3+2+2\,=\,9} .

Why so horrible complicate? Factorization of the polynom using the 3 roots and a simple comparison of coefficients is also possible! ;-)

Andreas Wendler - 5 years, 2 months ago

Log in to reply

Can you please explain your method ?

Aditya Sky - 5 years, 2 months ago
Otto Bretscher
Mar 30, 2016

The Chebyshev Polynomial of the Second Kind U 6 ( x ) = 64 x 6 80 x 4 + 24 x 2 1 U_6(x)=64x^6-80x^4+24x^2-1 = ( 8 x 3 + 4 x 2 4 x 1 ) ( 8 x 3 4 x 2 4 x + 1 ) =(8x^3+4x^2-4x-1)(8x^3-4x^2-4x+1) has the roots cos ( k π 7 ) \cos(\frac{k\pi}{7}) for k = 1 , . . , 6 k=1,..,6 with the first factor giving us the even k k . Thus the answer is 2 + 3 + 2 + 2 = 9 2+3+2+2=\boxed{9} .

Let

κ = 2 π / 7 \kappa = 2\pi/7 .

Then 3 κ = 2 π 4 κ 3\kappa = 2\pi - 4\kappa .

Then sin ( 3 κ ) = sin ( 4 κ ) \sin(3\kappa)=-\sin(4\kappa) .

Now putting the given values in the above equation at the place of κ \kappa we find all satisfying.

Hence by using elementary double and triple angle formulas we find

8 x 3 + 4 x 2 4 x 1 8x^{3} + 4x^{2} -4x -1 , where x = cos ( κ ) x=\cos(\kappa) .

Hence complaring coefficients we find a + b + c + d = 9 a+b+c+d=9 .

Chan Lye Lee
Apr 5, 2016

Let θ = 2 k π 7 \theta = \frac{2k\pi}{7} for k = 1 , 2 , 3 k=1,2,3 . Then cos 4 θ = cos 3 θ \cos 4\theta =\cos3\theta . This means that T 4 ( x ) = T 3 ( x ) T_4(x)=T_3(x) where x = cos θ x=\cos \theta . Now 8 x 4 4 x 3 8 x 2 + 3 x + 1 = 0 8x^4-4x^3-8x^2+3x+1=0 . Factorize it and we have ( x 1 ) ( 8 x 3 + 4 x 2 4 x 1 ) = 0 (x-1)(8x^3+4x^2-4x-1)=0 .

Now it is clear that cos 2 k π 7 \cos\frac{2k\pi}{7} , where k = 1 , 2 , 3 k=1,2,3 is a root of 8 x 3 + 4 x 2 4 x 1 = 0 8x^3+4x^2-4x-1=0 . Now a = 2 , b = 3 , c = 2 , d = 2 a=2, b=3, c=2, d=2 and hence a + b + c + d = 9 a+b+c+d=\boxed{9} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...