Will you integrate for each element?

Calculus Level 4

a k = 0 π 2 ( k + sin θ ) 2 cos θ d θ \large a_k = \displaystyle \int_{0}^{\frac{\pi}{2}} (k + \sin\theta)^2\cos\theta \, d\theta

For a k a_k , where k k is a positive integer, as defined above, then the determinant

a k k k 2 a k + 1 k + 1 ( k + 1 ) 2 a k + 2 k + 2 ( k + 2 ) 2 = p q \begin{vmatrix} a_k & k & k^2 \\ a_{k+1} & k+1 & (k+1)^2 \\ a_{k+2} & k+2 & (k+2)^2 \end{vmatrix} = \frac pq

where p p and q q are coprime positive integers . Find p + q p + q .


Try my set .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 31, 2016

a k = 0 π 2 ( k + sin θ ) 2 cos θ d θ Let x = sin θ d x = cos θ d θ = 0 1 ( k + x ) 2 d x = 0 1 ( k 2 + 2 k x + x 2 ) d x = k 2 x + k x 2 + x 3 3 0 1 = k 2 + k + 1 3 \begin{aligned} a_k & = \int_0 ^\frac \pi 2 (k + \sin \theta)^2 \cos \theta \ d \theta & \small \color{#3D99F6}{\text{Let }x = \sin \theta \implies dx = \cos \theta \ d \theta} \\ & = \int_0 ^1 (k+x)^2 \ dx \\ & = \int_0 ^1 (k^2+2kx + x^2) \ dx \\ & = k^2x+kx^2 + \frac {x^3}3 \bigg|_0^1 \\ & = k^2+k + \frac 13 \end{aligned}

X = a k k k 2 a k + 1 k + 1 ( k + 1 ) 2 a k + 2 k + 2 ( k + 2 ) 2 = k 2 + k + 1 3 k k 2 ( k + 1 ) 2 + k + 1 + 1 3 k + 1 ( k + 1 ) 2 ( k + 2 ) 2 + k + 2 + 1 3 k + 2 ( k + 2 ) 2 { r o w 1 r o w 1 r o w 2 r o w 1 r o w 2 r o w 3 r o w 2 r o w 3 = k 2 + k + 1 3 k k 2 2 k + 2 1 2 k + 1 2 k + 4 1 2 k + 3 { r o w 1 r o w 1 r o w 2 r o w 2 r o w 3 r o w 2 r o w 3 = k 2 + k + 1 3 k k 2 2 k + 2 1 2 k + 1 2 0 2 = 2 k 2 + 2 k + 2 3 + 4 k 2 + 2 k 4 k 2 4 k 2 k 2 = 2 3 \begin{aligned} X & = \begin{vmatrix} a_k & k & k^2 \\ a_{k+1} & k+1 & (k+1)^2 \\ a_{k+2} & k+2 & (k+2)^2 \end{vmatrix} \\ & = \begin{vmatrix} k^2+k + \frac 13 & k & k^2 \\ (k+1)^2+k+1 + \frac 13 & k+1 & (k+1)^2 \\ (k+2)^2+k + 2 + \frac 13 & k+2 & (k+2)^2 \end{vmatrix} & \small \color{#3D99F6}{\begin{cases} row_1 \to row_1 \\ row_2-row_1 \to row_2 \\ row_3-row_2 \to row_3 \end{cases}} \\ & = \begin{vmatrix} k^2+k + \frac 13 & k & k^2 \\ 2k+2 & 1 & 2k+1 \\ 2k+4 & 1 & 2k+3 \end{vmatrix} & \small \color{#3D99F6}{\begin{cases} row_1 \to row_1 \\ row_2 \to row_2 \\ row_3-row_2 \to row_3 \end{cases}} \\ & = \begin{vmatrix} k^2+k + \frac 13 & k & k^2 \\ 2k+2 & 1 & 2k+1 \\ 2 & 0 & 2 \end{vmatrix} \\ & = 2k^2+2k + \frac 23 + 4k^2+2k - 4k^2- 4k - 2k^2 \\ & = \frac 23 \end{aligned}

p + q = 2 + 3 = 5 \implies p+q = 2+3 = \boxed{5}

You could put k=0 as the answer is independent of k. But that would be 'cheating'.

Ajinkya Shivashankar - 4 years, 7 months ago

Log in to reply

There may be a easier way to solve the determinant. I am no good with it.

Chew-Seong Cheong - 4 years, 7 months ago

Not exactly k = 0 k=0 since the question states that k k is a positive integer and not "non negative integer". But we could substitute k = 1 k=1 , Cheers!!! :-)

Rohan Shinde - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...