Will you square 4

Algebra Level 3

5 ÷ 3 5 2 + 7 3 5 = ? \large \sqrt5 \div \frac { \sqrt { 3-\sqrt { 5 } } }{ \sqrt { 2 } +\sqrt { 7-3\sqrt { 5 } } } = \ ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 23, 2015

5 ÷ 3 5 2 + 7 3 5 = 5 ( 2 + 7 3 5 ) 3 5 = 5 ( 2 + 14 6 5 2 ) 6 2 5 2 = 5 ( 2 + ( 3 5 ) 2 2 ) ( 5 1 ) 2 2 = 5 ( 2 + 3 5 ) 5 1 = 5 ( 5 5 ) ( 5 + 1 ) 4 = 5 ˙ 5 ( 5 1 ) ( 1 + 5 ) 4 = 5 ( 4 ) 4 = 5 \begin{aligned} \sqrt{5} \div \frac{\sqrt{3-\sqrt{5}}} {\sqrt{2} + \sqrt{7-3\sqrt{5}}} & = \frac {\sqrt{5}\left( \sqrt{2} + \sqrt{7-3\sqrt{5}} \right)} {\sqrt{3-\sqrt{5}}} \\ & = \frac {\sqrt{5}\left( \sqrt{2} + \sqrt{\dfrac{14-6\sqrt{5}}{2}} \right)} {\sqrt{\dfrac{6-2\sqrt{5}}{2}}} \\ & = \frac {\sqrt{5}\left( \dfrac{2 + \sqrt{(3 - \sqrt{5})^2}}{\sqrt{2}} \right)} {\sqrt{\dfrac{(\sqrt{5} - 1)^2}{2}}} \\ & = \frac {\sqrt{5}\left(2 + 3 - \sqrt{5} \right)} {\sqrt{5}-1} \\ & = \frac {\sqrt{5} \left(5 - \sqrt{5} \right) \left(\sqrt{5} + 1 \right)} {4} \\ & = \frac {\sqrt{5} \dot{} \sqrt{5} \left(\sqrt{5} - 1 \right) \left(1 + \sqrt{5} \right)} {4} \\ & = \frac {5(4)} {4} = \boxed{5} \end{aligned}

Thanks Sir. 2nd line was a very smart move...

Asif Rochy - 5 years, 10 months ago

Log in to reply

Thanks. You have to learn to read the mind of the problem writer. There must be certain tricks needed to solve the problem easily.

Chew-Seong Cheong - 5 years, 10 months ago
Shashank Ojha
Jul 25, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...