Will you square ???

Algebra Level 4

If 3 8 + 6 + 32 = a + b c \sqrt { \sqrt { 3-\sqrt { 8 } } +\sqrt { 6+\sqrt { 32 } } } =\sqrt { \sqrt { a+b\sqrt { c } } } ,where a , b , c a,b,c\in natural numbers and c c is square free.Find a + b + c a+b+c .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Shivamani Patil
Aug 26, 2014

First notice that 3 8 = 2 2 2 + 1 = ( 2 1 ) 2 = 2 1 \sqrt { 3-\sqrt { 8 } } =\sqrt { 2-2\sqrt { 2 } +1 } =\sqrt { { (\sqrt { 2 } -1) }^{ 2 } } =\sqrt { 2 } -1

Also

6 + 32 = 2 + 2 × 2 2 + 4 = ( 2 + 2 ) 2 = 2 + 2 \sqrt { 6+\sqrt { 32 } } =\sqrt { 2+2\times 2\sqrt { 2 } +4 } =\sqrt { { (\sqrt { 2 } +2) }^{ 2 } } =\sqrt { 2 } +2

Therefore

3 8 + 6 + 32 = 2 1 + 2 + 2 = 2 2 + 1 \sqrt { \sqrt { 3-\sqrt { 8 } } +\sqrt { 6+\sqrt { 32 } } }=\sqrt { \sqrt { 2 } -1+\sqrt { 2 } +2 } =\sqrt { 2\sqrt { 2 } +1 }

Now,

2 2 + 1 = ( 2 2 + 1 ) 2 \sqrt { 2\sqrt { 2 } +1 } =\sqrt { \sqrt { { (2\sqrt { 2 } +1) }^{ 2 } } }

8 + 2 × 2 2 + 1 = 9 + 2 × 2 2 = 9 + 4 2 \sqrt { \sqrt { 8+2\times 2\sqrt { 2 } +1 } } =\sqrt { \sqrt { 9+2\times 2\sqrt { 2 } } } =\sqrt { 9+4\sqrt { 2 } }

Now by comparing RHS of original equation we get a = 9 , b = 4 , c = 2 a=9,b=4,c=2

And a + b + c = 15 a+b+c=15

i just wonder is it true if i write :

9 + 4 2 \sqrt{9+4\sqrt{2}} = 9 + 2 8 \sqrt{9+2\sqrt{8}} = 9 + 1 32 \sqrt{9+1\sqrt{32}}

the question doesn't say that c \sqrt{c} must be in simplest radical form, so in that case, you can find 3 different answers for this question.

Fahrul Razi - 6 years, 9 months ago

Log in to reply

Actually, it does say that c is square-free

Abhishek Gorai - 6 years, 9 months ago

@shivamani patil There's a typo in the 1 s t 1^{st} line.It should be 2 1 \sqrt{2}-1 ...

Satvik Golechha - 6 years, 9 months ago

Log in to reply

Yeah... True!

Krishna Ar - 6 years, 9 months ago

You should specify that a , b , c a,b,c are natural numbers, not real numbers and that c c is square free. Otherwise, there are multiple answers for the question. @shivamani patil

Nanayaranaraknas Vahdam - 6 years, 9 months ago

All that fixed

shivamani patil - 6 years, 9 months ago

integrate cosx/x from npi to (n+1)pi

Neeraj Gupta - 6 years, 9 months ago

i have solved it by comparing values in their radicals 3+6=9 at L.H.S which equals toa 'a' at R.H.S then common in 8 &32 is 2 which is equal to ' b' then multipy the remainder in 8 ( 2 )and 32 is (8 ) which is 16 sq.root of 16 is 4 =c so a+b+c=9+2+4=15

esha aslam - 6 years, 8 months ago
Chew-Seong Cheong
Aug 26, 2014

It is given that:

3 8 + 6 + 32 = a + b c \sqrt{\sqrt{3-\sqrt{8}}+\sqrt{6+\sqrt{32}}} = \sqrt{ \sqrt{a+b\sqrt{c}}}

Squaring both side:

3 8 + 6 + 32 = a + b c \sqrt{3-\sqrt{8}}+\sqrt{6+\sqrt{32}} = \sqrt{a+b\sqrt{c}}

Squaring the left hand side:

( L H S ) 2 = 3 8 + 2 ( 3 8 ) ( 6 + 32 ) + 6 + 32 (LHS)^2 = 3-\sqrt{8}+2(\sqrt{3-\sqrt{8}})( \sqrt{6+\sqrt{32}}) +6+\sqrt{32}

= 9 8 + 32 + 2 ( 3 8 ) ( 2 ( 3 + 8 ) ) \quad \quad \quad = 9-\sqrt{8}+\sqrt{32} + 2(\sqrt{3-\sqrt{8}}) ( \sqrt{2(3+\sqrt{8})})

= 9 2 2 + 4 2 + 2 2 ( 3 8 ) ( 3 + 8 ) \quad \quad \quad = 9-2\sqrt{2}+4\sqrt{2} + 2 \sqrt{2} (\sqrt{3-\sqrt{8}}) ( \sqrt{3+\sqrt{8}})

= 9 + 2 2 + 2 2 9 8 \quad \quad \quad = 9 + 2\sqrt{2} + 2 \sqrt{2} \sqrt{9-8}

= 9 + 2 2 + 2 2 1 \quad \quad \quad = 9 + 2\sqrt{2} + 2 \sqrt{2} \sqrt{1}

= 9 + 4 2 \quad \quad \quad = 9 + 4\sqrt{2}

a = 9 , b = 4 , c = 2 \Rightarrow a = 9, \quad b = 4, \quad c = 2

a + b + c = 15 \Rightarrow a+b+c = \boxed{15}

How did you get +2(root 3 - root 8)(root 6 + root 32) in the first line? I see if you square the left hand side, u remove the root on 3, the root on 6. And your left with root 8 and root 32.

Khan Asif - 6 years, 9 months ago

Khan Asif, let a = 3 8 a=\sqrt{3-\sqrt{8}} and b = 6 + 32 b=\sqrt{6+\sqrt{32}} , then

( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2=a^2+2ab+b^2

= 3 8 + 2 ( 3 8 ) ( 6 + 32 ) + 6 + 32 \quad \quad =3-\sqrt{8}+2(\sqrt{3-\sqrt{8}}) ( \sqrt{6+\sqrt{32}}) +6+\sqrt{32}

Chew-Seong Cheong - 6 years, 9 months ago

Khan Asif, ( a + b ) 2 = ( a + b ) ( a + b ) = a 2 + a b + b a + b 2 = a 2 + 2 a b + b 2 a 2 + b 2 (a+b)^2=(a+b)(a+b)=a^2+ab+ba+b^2 = a^2 + 2ab + b^2 \ne a^2+b^2

Note that: 5 2 = ( 3 + 2 ) 2 = 3 2 + 2 ( 3 ) ( 2 ) + 2 2 = 25 3 2 + 2 2 = 13 5^2 = (3+2)^2 = 3^2+2(3)(2)+2^2 = 25 \ne 3^2+2^2 = 13

Also: 5 2 = ( 4 + 1 ) 2 = 4 2 + 2 ( 4 ) ( 1 ) + 1 2 = 25 4 2 + 1 2 = 17 5^2 = (4+1)^2 = 4^2+2(4)(1)+1^2 = 25 \ne 4^2+1^2 = 17

Chew-Seong Cheong - 6 years, 9 months ago
Adam Zaim
Sep 20, 2014

3 8 + 6 + 32 = a + b c 3 8 + 6 + 32 = a + b c ( 3 8 + 6 + 32 ) 2 = ( a + b c ) 2 3 8 + 2 ( 3 8 ) ( 6 + 32 ) + 6 + 32 = a + b c 9 8 + 32 + 2 ( 3 8 ) ( 6 + 32 ) = a + b c \sqrt { \sqrt { 3-\sqrt { 8 } } +\sqrt { 6+\sqrt { 32 } } } =\sqrt { \sqrt { a+b\sqrt { c } } } \\ \sqrt { 3-\sqrt { 8 } } +\sqrt { 6+\sqrt { 32 } } =\sqrt { a+b\sqrt { c } } \\ { \left( \sqrt { 3-\sqrt { 8 } } +\sqrt { 6+\sqrt { 32 } } \right) }^{ 2 }={ \left( \sqrt { a+b\sqrt { c } } \right) }^{ 2 }\\ 3-\sqrt { 8 } +2\left( \sqrt { 3-\sqrt { 8 } } \right) \left( \sqrt { 6+\sqrt { 32 } } \right) +6+\sqrt { 32 } =a+b\sqrt { c } \\ 9-\sqrt { 8 } +\sqrt { 32 } +2\left( \sqrt { 3-\sqrt { 8 } } \right) \left( \sqrt { 6+\sqrt { 32 } } \right) =a+b\sqrt { c }

Simplify 2 ( 3 8 ) ( 6 + 32 ) 2\left( \sqrt { 3-\sqrt { 8 } } \right) \left( \sqrt { 6+\sqrt { 32 } } \right)

2 ( 3 8 ) ( 6 + 32 ) = 2 ( 3 8 ) 1 2 ( 6 + 32 ) 1 2 = 2 ( ( 3 8 ) ( 6 + 32 ) ) 1 2 = 2 ( 18 + 3 32 6 8 8 32 ) 1 2 = 2 ( 18 + 3 8 4 6 8 256 ) 1 2 = 2 ( 18 + 6 8 6 8 16 ) 1 2 = 2 2 2\left( \sqrt { 3-\sqrt { 8 } } \right) \left( \sqrt { 6+\sqrt { 32 } } \right) \\ =2{ \left( 3-\sqrt { 8 } \right) }^{ \frac { 1 }{ 2 } }{ \left( 6+\sqrt { 32 } \right) }^{ \frac { 1 }{ 2 } }\\ =2{ \left( \left( 3-\sqrt { 8 } \right) { \left( 6+\sqrt { 32 } \right) } \right) }^{ \frac { 1 }{ 2 } }\\ =2{ \left( 18+3\sqrt { 32 } -6\sqrt { 8 } -\sqrt { 8\ast 32 } \right) }^{ \frac { 1 }{ 2 } }\\ =2{ \left( 18+3\sqrt { 8\ast 4 } -6\sqrt { 8 } -\sqrt { 256 } \right) }^{ \frac { 1 }{ 2 } }\\ =2{ \left( 18+6\sqrt { 8 } -6\sqrt { 8 } -16 \right) }^{ \frac { 1 }{ 2 } }\\ =2\sqrt { 2 }

So...

9 8 + 32 + 2 ( 3 8 ) ( 6 + 32 ) = a + b c 9 8 + 32 + 2 2 = a + b c 9 4 2 + 2 2 + 16 2 = a + b c 9 2 2 + 2 2 + 4 2 = a + b c 9 + 4 2 = a + b c a + b + c = 9 + 4 + 2 = 15 9-\sqrt { 8 } +\sqrt { 32 } +2\left( \sqrt { 3-\sqrt { 8 } } \right) \left( \sqrt { 6+\sqrt { 32 } } \right) =a+b\sqrt { c } \\ 9-\sqrt { 8 } +\sqrt { 32 } +2\sqrt { 2 } =a+b\sqrt { c } \\ 9-\sqrt { 4\ast 2 } +2\sqrt { 2 } +\sqrt { 16\ast 2 } =a+b\sqrt { c } \\ 9-2\sqrt { 2 } +2\sqrt { 2 } +4\sqrt { 2 } =a+b\sqrt { c } \\ 9+4\sqrt { 2 } =a+b\sqrt { c } \\ \therefore a+b+c=9+4+2=15

Christian Daang
Oct 19, 2014

Simplify First the equation inside the radical,

√(3-√8) + √(6+√32)

= [√(3-√8) + √(6+√32)]^2

= 3-2√2 + 2√2 + 6 + 4√2

= 9 + 4√2

= √(9+4√2)

then, the whole expression is equal to:

√[√(9+4√2)]

where in, a = 9, b=4, c=2

giving us, a+b+c = 9+4+2 = 15

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...