Will you use L'hopital? (1)

Calculus Level 3

lim x 0 1 cos x + 2 sin x sin 3 x x 2 + 3 x 4 tan 3 x 6 sin 2 x + x 5 x 3 = ? \large \lim _{ x\to 0 }{ \frac { 1-\cos { x } +2\sin { x } -\sin ^{ 3 }{ x } -{ x }^{ 2 }+3{ x }^{ 4 } }{ \tan ^{ 3 }{ x-6\sin ^{ 2 }{ x } +x-5{ x }^{ 3 } } } } = \, ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jun 27, 2016

Relevant wiki: L'Hopital's Rule - Intermediate

L = lim x 0 1 cos x + 2 sin x sin 3 x x 2 + 3 x 4 tan 3 x 6 sin 2 x + x 5 x 3 Since this is a 0 / 0 case, we can apply L’H o ˆ pital’s rule. = lim x 0 sin x + 2 cos x 3 sin 2 x cos x 2 x + 12 x 3 3 tan 2 x sec 2 x 12 sin x cos x + 1 15 x 2 Differentiating up and down w.r.t. x . = 2 \begin{aligned} \mathscr L & = \lim_{x \to 0} \frac {1-\cos x +2\sin x -\sin ^3 x -x^2+3x^4}{\tan^3 x - 6\sin^2 x +x-5x^3} \quad \quad \small \color{#3D99F6}{\text{Since this is a } 0 / 0 \text{ case, we can apply L'Hôpital's rule.}} \\ & = \lim_{x \to 0} \frac {\sin x +2\cos x -3\sin^2 x \cos x -2x+12x^3}{3\tan^2 x\sec^2 x - 12\sin x\cos x +1-15x^2} \quad \quad \small \color{#3D99F6}{\text{Differentiating up and down w.r.t. } x.} \\ & = \boxed{2} \end{aligned}

Did the same! :)

Prakhar Bindal - 4 years, 11 months ago

Ermmm...isn't this a 0 0 \dfrac{0}{0} case?

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Thanks again. I had just given a solution about / \infty / \infty and it was still in my mind.

Chew-Seong Cheong - 4 years, 11 months ago

Second line should be +sin(x) not -sin(x) since derivative of cos(x) is -sin(x)

Hugsy Bojangles - 4 years, 11 months ago

Thanks, I have changed it.

Chew-Seong Cheong - 4 years, 11 months ago
Rishi Sharma
Jun 27, 2016

Using the maclaurin series of sin x \sin{x} tan x \tan{x} and cos x \cos{x} . The given limit transforms to lim x 0 1 ( 1 x 2 2 ! + . . . . ) + 2 ( x x 3 3 ! + . . . . . ) ( x x 3 3 ! + . . . . . . . ) 3 x 2 + 3 x 4 ( x + x 3 3 + . . . . . . . ) 3 6 ( x x 3 3 ! + . . . . . ) 2 + x 5 x 3 \lim _{ x\rightarrow 0 }{ \frac { 1-\left( 1-\frac { { x }^{ 2 } }{ 2! } +.... \right) +2\left( x-\frac { { x }^{ 3 } }{ 3! } +..... \right) -{ \left( x-\frac { { x }^{ 3 } }{ 3! } +....... \right) }^{ 3 }-{ x }^{ 2 }+3{ x }^{ 4 } }{ { {\left( x+\frac { { x }^{ 3 } }{ 3 } +....... \right)}^{3} -6{ \left( x-\frac { { x }^{ 3 } }{ 3! } +..... \right) }^{ 2 }+x-5{ x }^{ 3 } } } } Now taking x x common from both N r {N}^{r} and D r {D}^{r} . We get lim x 0 x 2 ! + 2 ( 1 x 2 3 ! + . . . . . ) x 2 ( 1 x 2 3 ! + . . . . . . . ) 3 x + 3 x 3 x 2 ( 1 x 2 3 + . . . . . . . ) 3 6 x ( 1 x 2 3 ! + . . . . . ) 2 + 1 5 x 2 = 2 \lim _{ x\rightarrow 0 }{ \frac { \frac { x }{ 2! } +2\left( 1-\frac { { x }^{ 2 } }{ 3! } +..... \right) -{ { x }^{ 2 }\left( 1-\frac { { x }^{ 2 } }{ 3! } +....... \right) }^{ 3 }-{ x }+3{ x }^{ 3 } }{ { { x }^{ 2 }{ \left( 1-\frac { { x }^{ 2 } }{ 3 } +....... \right) }^{ 3 }-6{ x\left( 1-\frac { { x }^{ 2 } }{ 3! } +..... \right) }^{ 2 }+1-5{ x }^{ 2 } } } } =2

Chester Cheng
Jun 28, 2016

As x goes to 0, sin x~ x and cos x~ 1-x^2, substitute wherever suitable and the result follows

Aman Dubey
Jul 6, 2016

Divide numerator and denominator by x and solve.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...