x → 0 lim tan 3 x − 6 sin 2 x + x − 5 x 3 1 − cos x + 2 sin x − sin 3 x − x 2 + 3 x 4 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Did the same! :)
Ermmm...isn't this a 0 0 case?
Log in to reply
Thanks again. I had just given a solution about ∞ / ∞ and it was still in my mind.
Second line should be +sin(x) not -sin(x) since derivative of cos(x) is -sin(x)
Thanks, I have changed it.
Using the maclaurin series of sin x tan x and cos x . The given limit transforms to x → 0 lim ( x + 3 x 3 + . . . . . . . ) 3 − 6 ( x − 3 ! x 3 + . . . . . ) 2 + x − 5 x 3 1 − ( 1 − 2 ! x 2 + . . . . ) + 2 ( x − 3 ! x 3 + . . . . . ) − ( x − 3 ! x 3 + . . . . . . . ) 3 − x 2 + 3 x 4 Now taking x common from both N r and D r . We get x → 0 lim x 2 ( 1 − 3 x 2 + . . . . . . . ) 3 − 6 x ( 1 − 3 ! x 2 + . . . . . ) 2 + 1 − 5 x 2 2 ! x + 2 ( 1 − 3 ! x 2 + . . . . . ) − x 2 ( 1 − 3 ! x 2 + . . . . . . . ) 3 − x + 3 x 3 = 2
As x goes to 0, sin x~ x and cos x~ 1-x^2, substitute wherever suitable and the result follows
Divide numerator and denominator by x and solve.
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: L'Hopital's Rule - Intermediate
L = x → 0 lim tan 3 x − 6 sin 2 x + x − 5 x 3 1 − cos x + 2 sin x − sin 3 x − x 2 + 3 x 4 Since this is a 0 / 0 case, we can apply L’H o ˆ pital’s rule. = x → 0 lim 3 tan 2 x sec 2 x − 1 2 sin x cos x + 1 − 1 5 x 2 sin x + 2 cos x − 3 sin 2 x cos x − 2 x + 1 2 x 3 Differentiating up and down w.r.t. x . = 2