Wilson's Theorem will help

( 50 ! ) 2 m o d 101 = ? (50!)^2 \bmod{101} = \, ?

Notation: ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .

0 1 50 51 100

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Nov 28, 2020

By a corollary of Wilson's theorem (2) , if p p is a prime of the form 4 k + 1 4k+1 , where k k is an integer, then [ ( 2 k ) ! ] 2 1 ( m o d p ) [(2k)!]^2 \equiv -1 \pmod p . Since 101 101 is of the form 4 k + 1 4k+1 , where k = 25 k=25 , then ( 50 ! ) 2 1 100 ( m o d 101 ) (50!)^2 \equiv -1 \equiv \boxed{100} \pmod {101} .

Sathvik Acharya
Nov 29, 2020

Since 101 101 is prime, by Wilson's Theorem , 100 ! 1 ( m o d 101 ) 100!\equiv -1\pmod{101} We observe that 100 ! = 100 × 99 × 98 × × 51 × ( 50 ) ! 100!=100 \times 99\times 98\times \cdots \times 51\times (50)! 100 1 ( m o d 101 ) 100\equiv-1\pmod{101} 99 2 ( m o d 101 ) 99\equiv -2\pmod{101} 98 3 ( m o d 101 ) 98\equiv -3\pmod{101} \cdot \cdot 51 50 ( m o d 101 ) 51\equiv -50\pmod{101} 50 ! 50 ! ( m o d 101 ) 50!\equiv 50!\pmod{101} Multiplying the above congruence relations, 100 ! ( 50 ! ) 2 1 ( m o d 101 ) 100!\equiv (50!)^2\equiv -1\pmod{101} Therefore, ( 50 ! ) 2 100 ( m o d 101 ) \boxed{(50!)^2\equiv100\pmod{101}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...