Winter Holiday Homework---- Quadratic Equation #1

Algebra Level 2

In equation x² —4x=9996, which one is the right statement of the roots?

two the same roots not sure two different roots no real roots

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zhen Xian Hew
Jun 9, 2015

To determine whether there exist real roots, the square root of the \large\text { To determine whether there exist real roots, the square root of the } discriminant in the quadratic formula is used , \large\text { discriminant in the quadratic formula is used , }

b 2 4 a c \large\displaystyle \sqrt{ b^{2} - 4ac }

Substitute the values of the coefficient of the quadratic equation, \large\text { Substitute the values of the coefficient of the quadratic equation, } ( 4 ) 2 4 ( 1 ) ( 9996 ) = 40000 = 200 \large\displaystyle {\sqrt{ (-4)^2 - 4(1)(-9996)} = \sqrt{ 40000 } = 200 }

Therefore , the quadratic equation has two real roots. \large\text { Therefore , the quadratic equation has two real roots. }

To determine the nature of the roots of the quadratic equation , \large\text { To determine the nature of the roots of the quadratic equation , } the discriminant is used , \large\text { the discriminant is used , }

b 2 4 a c \large\displaystyle { b^{2} - 4ac }

By substituting the same value into the discriminant, we get \large\text { By substituting the same value into the discriminant, we get } b 2 4 a c > 0 as 200 > 0 which concludes that the quadratic \large\displaystyle { b^{2} - 4ac > 0 } \text{ as } \displaystyle{ 200 > 0 } \text{ which concludes that the quadratic } equation to have two distinct real roots. \large\text { equation to have two distinct real roots. }

In the quadratic equation x 2 4 x 9996 = 0 , x^2-4x-9996=0, A = 1 , B = 4 A=1,B=-4 and C = 9996 C=-9996 . We find that

B 2 = ( 4 ) 2 = 16 B^2=(-4)^2=16

4 A C = 4 ( 9998 ) = 39984 4AC=4(-9998)=-39984

Since B 2 > 4 A C B^2>4AC , the roots are real and unequal or among the choices: "two different roots".

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...