Wish e 2 x e^{-2 x} wasn't there

Calculus Level 5

0 ln ( cos 2 t + e 2 x sin 2 t ) sinh x d x = f ( t ) \large{\displaystyle \int^{\infty}_{0} \dfrac{\ln( \cos^2 t+ e^{-2x} \sin^2 t)}{\sinh x} dx=f(t)}

Find f ( 7 ) f(7) up to 4 decimal places.


The answer is -1.02765.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Feb 21, 2016

If we consider 0 ln ( 1 b + b e 2 x ) sinh x d x = 2 0 ln ( 1 b + b e 2 x ) e x e x d x = 2 0 ln ( 1 b + b e 2 x ) 1 e 2 x e x d x = 2 0 1 ln ( 1 b ( 1 u 2 ) ) 1 u 2 d u = 2 n = 1 b n n 0 1 ( 1 u 2 ) n 1 d u = 2 n = 1 b n n 0 1 2 π cos 2 n 1 θ d θ = 2 n = 1 2 n b n ( n 1 ) ! n ( 2 n 1 ) ! ! = 2 ( sin 1 b ) 2 \begin{array}{rcl} \displaystyle \int_0^\infty \frac{\ln(1-b + be^{-2x})}{\sinh x}\,dx & = & \displaystyle 2\int_0^\infty \frac{\ln(1-b + be^{-2x})}{e^x-e^{-x}}\,dx \\ & = & \displaystyle 2\int_0^\infty \frac{\ln(1 - b + be^{-2x})}{1 - e^{-2x}}\,e^{-x}\,dx \\ & = & \displaystyle 2\int_0^1 \frac{\ln(1 - b(1-u^2))}{1 - u^2}\,du \\ & = & \displaystyle -2\sum_{n=1}^\infty \frac{b^n}{n} \int_0^1 (1-u^2)^{n-1}\,du \\ & = & \displaystyle -2\sum_{n=1}^\infty \frac{b^n}{n} \int_0^{\frac12\pi} \cos^{2n-1}\theta\,d\theta \\ & = & \displaystyle -2\sum_{n=1}^\infty \frac{2^n b^n (n-1)!}{n(2n-1)!!} \\ & = & -2\left(\sin^{-1}\sqrt{b}\right)^2 \end{array} for any 0 < b < 1 0 < b < 1 , using the substitutions u = e x u = e^{-x} and u = sin θ u = \sin\theta , and a standard formula for ( sin 1 θ ) 2 \big(\sin^{-1}\theta\big)^2 , we deduce that f ( t ) = 2 ( sin 1 sin t ) 2 , f(t) \; = \; -2\big(\sin^{-1}|\sin t|\big)^2\;, which makes f ( 7 ) = 2 ( 7 2 π ) 2 = 1.02765 f(7) = -2(7-2\pi)^2 = \boxed{-1.02765} .

Antara Chatterjee
Jan 14, 2019

Use Feynmann's differentiation under the integral sign to differentiate it wrt t . You would get that f'(t) = -4arctan(tan(t)) . As f(0) = 0 . We integrate f'(t) from 0 to 7. As it is a discontinuous function it would be the same as the -4 times area of a right angled isosceles triangle of base and height (2 π \pi -7)
[See the graph for clarity] Which gives the result as -1.207

Elaborate a bit please.

Md Haris - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...