With θ \theta

Calculus Level 4

The following integral is equal to I . I. Find 1000 I . \lfloor1000I\rfloor. I = 0 π e cos θ cos θ sin θ d θ I=\int_0^\pi e^{\cos\theta}\cos\theta\sin\theta\text{ }d\theta


The answer is 735.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Use substitution first:

Let x = cos θ x=\cos \theta

e cos θ cos θ sin θ d θ = e x x d x \int{e^{\cos \theta} \cos \theta\, \sin \theta \, d \theta} = - \int{e^{x} x\, \, d x}

Now, integrate by parts:

x e x d x = ( x e x e x ) = e x x e x - \int{x\,e^x\,dx} = - (x\,e^x - e^x) = e^x - x\,e^x

Ignore the constant of integration.

0 π e cos θ cos θ sin θ d θ = e x x e x = e cos θ cos θ e cos θ \int^{\pi}_{0}{e^{\cos \theta} \cos \theta\, \sin \theta \, d \theta} = e^x - x\,e^x = e^{\cos \theta} - \cos \theta \, e^{\cos \theta}

To put back the limits, we insert θ = π \theta = \pi and simplify to get:

0 π e cos θ cos θ sin θ d θ = 2 e \int^{\pi}_{0}{e^{\cos \theta} \,\cos \theta\, \sin \theta \, d \theta} = \frac{2}{e}

Now, do the rest yourself..... I must go for lunch

did exactly the same!

Kartik Sharma - 6 years, 9 months ago

Oops, forgot to post the without θ \theta part of this question. I'll do that now and post the set.

Trevor B. - 6 years, 9 months ago

I changed the limits when I did the substitution, negating the need to sub back in again, but other than that, identical method

David Monk - 6 years, 8 months ago
Samarth Sangam
Sep 26, 2014

I = 0 π e c o s θ c o s θ s i n θ d θ p u t c o s θ = t t h e n s i n θ d θ = d t w h e n θ = π t = 1 θ = 0 t = 1 t h e n I = 1 1 e t t d t = 1 1 e t t d t = 2 e I=\int _{ 0 }^{ \pi }{ { e }^{ cos\theta }cos\theta \quad sin\theta } d\theta \\ put\quad cos\theta =t\\ then\quad -sin\theta d\theta =dt\\ when\quad \theta =\pi \quad t=-1\\ \quad \quad \quad \quad \quad \theta =0\quad t=1\\ then\quad I=-\int _{ 1 }^{ -1 }{ { e }^{ t } } t\quad dt\\ \quad \quad \quad \quad \quad =\int _{ -1 }^{ 1 }{ { e }^{ t } } t\quad dt\\ \quad \quad \quad \quad \quad =\frac { 2 }{ e }

0 π e c o s θ cos θ sin θ d θ \displaystyle \int_{0}^{\pi} e^{cos \theta}\cos\theta\sin\theta d\theta The sustitution that makes this easier is c o s θ = x = > d θ = d x s i n θ cos\theta = x => d\theta = \frac{dx}{-sin\theta} . Therefore 0 π e c o s θ cos θ sin θ d θ = 1 1 e x x d x \displaystyle \int_{0}^{\pi} e^{cos\theta}\cos\theta\sin\theta d\theta = \displaystyle \int_{-1}^{1} e^{x}x dx ( e x x ] 1 1 1 1 e x d x (e^{x}x]_{-1}^{1}-\displaystyle \int_{-1}^{1}e^{x} dx = e + 1 e e + 1 e =e+\frac{1}{e} -e+\frac{1}{e}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...