Without calculator

Algebra Level 2

1 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 + 7 2 + 8 2 + 9 2 + 1 0 2 + 1 1 2 + . . . + 201 5 2 = ? 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+9^2+10^2+11^2+...+2015^2=?

2729148240 1989044343 2713344450 2348974588

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Paola Ramírez
Dec 2, 2015

A sum squares is given by the formula n ( n + 1 ) ( 2 n + 1 ) 6 \frac{n(n+1)(2n+1)}{6} where n n is the last square number

\therefore

1 2 + 2 2 + 3 2 + . . . + 201 5 2 = 2015 ( 2016 ) ( 4031 ) 6 = 2729148240 1^2+2^2+3^2+...+2015^2=\frac{2015(2016)(4031)}{6}=\boxed{2729148240}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...