Without Integration II

Calculus Level 3

Which is larger?

S = 0 1 sin x 1 x 2 d x 0 C = 0 1 cos x 1 x 2 d x S = \int_0^1\frac {\sin x}{\sqrt{1-x^2}}\, dx \\ \phantom0 \\ C = \int_0^1\frac {\cos x}{\sqrt{1-x^2}}\, dx

S S C C They are both equal

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 27, 2019

C = 0 1 cos x 1 x 2 d x Since cos θ = sin ( π 2 θ ) = 0 1 sin ( π 2 x ) 1 x 2 d x and sin ( π θ ) = sin θ = 0 1 sin ( π 2 + x ) 1 x 2 d x = π 2 π 2 + 1 sin x 1 x 2 d x Since sin x is symmetrical about π 2 = π 2 1 π 2 sin x 1 x 2 d x and sin ( π 2 1 + x ) > sin x x [ 0 , 1 ] > 0 1 sin x 1 x 2 d x \begin{aligned} C & = \int_0^1 \frac {\cos x}{\sqrt{1-x^2}} dx & \small \color{#3D99F6} \text{Since }\cos \theta = \sin \left(\frac \pi 2 - \theta\right) \\ & = \int_0^1 \frac {\sin \left(\frac \pi 2-x\right)}{\sqrt{1-x^2}} dx & \small \color{#3D99F6} \text{and }\sin (\pi - \theta) = \sin \theta \\ & = \int_0^1 \frac {\sin \left(\frac \pi 2+x\right)}{\sqrt{1-x^2}} dx \\ & = \int_\frac \pi 2^{\frac \pi 2 + 1} \frac {\sin x}{\sqrt{1-x^2}} dx & \small \color{#3D99F6} \text{Since }\sin x \text{ is symmetrical about }\frac \pi 2 \\ & = \int^\frac \pi 2_{\frac \pi 2 - 1} \frac {\sin x}{\sqrt{1-x^2}} dx & \small \color{#3D99F6} \text{and }\sin \left(\frac \pi 2 -1 + x\right) > \sin x \ \forall x \in [0, 1] \\ & > \int_0^1 \frac {\sin x}{\sqrt{1-x^2}} dx \end{aligned}

Therefore, C > S \boxed{C > S}

Sine starts from zero and grows in that range. Cosine starts from 1 and shrinks in that range and stays larger than sine over most of that range.

0 1 sin ( x ) 1 x 2 d x = π H 0 ( 1 ) 2 0.893243740975026 \int_0^1 \frac{\sin (x)}{\sqrt{1-x^2}} \, dx= \frac{\pi \bm{H}_0(1)}{2}\approx 0.893243740975026

0 1 cos ( x ) 1 x 2 d x = π J 0 ( 1 ) 2 1.20196971531721 \int_0^1 \frac{\cos (x)}{\sqrt{1-x^2}} \, dx=\frac{\pi J_0(1)}{2} \approx 1.20196971531721

What does the functions H 0 ( ) H_0(\cdot) and J 0 ( ) J_0(\cdot) represent?

Pi Han Goh - 1 year, 10 months ago

They are special functions , namely, StruveH and BesselJ .

A Former Brilliant Member - 1 year, 10 months ago

Log in to reply

thank you.

Pi Han Goh - 1 year, 10 months ago

Log in to reply

You are welcome.

A Former Brilliant Member - 1 year, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...