Without θ \theta

Calculus Level 4

The following integral is equal to I . I. Find 100 I . \lfloor100I\rfloor. I = 0 π e cos θ cos ( sin θ ) d θ I=\int_0^\pi e^{\cos\theta}\cos(\sin\theta)d\theta


The answer is 314.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shivang Jindal
Sep 18, 2014

This is nice question and a excellent example of differentiating then integration technique.

Consider , I ( a ) = 0 π e a cos ( θ ) cos ( a sin ( θ ) ) d θ I(a) = \int_{0}^{\pi} e^{a\cos(\theta)}\cos(a\sin(\theta)) d\theta Differnating with respect to a a yeild,

I ( a ) = 0 π e a cos ( θ ) ( cos ( θ ) cos ( a sin ( θ ) ) sin ( θ ) sin ( a sin ( θ ) ) I'(a) = \int_{0}^{\pi} e^{a\cos(\theta)}(\cos(\theta)\cos(a\sin(\theta)) - \sin(\theta)\sin(a\sin(\theta))

I ( a ) = 1 a [ e a cos ( θ ) sin ( a sin ( θ ) ) ] 0 π = 0 I'(a) = \frac{1}{a} \Big[e^{a \cos(\theta)}\sin(a\sin(\theta))\Big]_0^{\pi} = 0

So this is a constant function! . So, I ( 1 ) = I ( 0 ) = π I(1)=I(0) = \pi \Box

shivang.. ur solution is awesome.. :)

Guru Raja Dintakurthi - 6 years, 8 months ago

0 π e cos t cos ( sin t ) d t = Re ( 0 π e cos t ( cos ( sin t ) + i sin ( sin t ) ) d t ) = Re ( 0 π e cos t e i sin t d t ) = Re ( 0 π e cos t + i sin t d t ) = Re ( 0 π e e i t d t ) = Re ( 0 π k = 0 1 k ! ( e i t ) k d t ) = Re ( 0 π 1 + k = 1 1 k ! e i k t d t ) = Re ( π 0 + k = 1 ( 1 k ! 0 π e i k t d t ) ) = Re ( π + k = 1 ( 1 k ! 1 i k e i k t d t ) ) = Re ( π + k = 1 ( 1 k ! ( e i k π i k e i k 0 i k ) ) ) = Re ( π + k = 1 ( 1 ) k 1 i k k ! ) = Re ( π + 1 i k = 1 ( 1 ) k 1 k k ! ) = Re ( π i k = 1 ( 1 ) k 1 k k ! ) = π \begin{aligned} \int_0^\pi e^{\cos{t}}\cos{\left(\sin{t}\right)}\ dt &=&\text{Re}\left(\int_0^\pi e^{\cos{t}}\left(\cos{\left(\sin{t}\right)}+i\sin{\left(\sin{t}\right)}\right)\ dt\right)\\ &=&\text{Re}\left(\int_0^\pi e^{\cos{t}}e^{i\sin{t}}\ dt\right)\\ &=&\text{Re}\left(\int_0^\pi e^{\cos{t}+i\sin{t}}\ dt\right)\\ &=&\text{Re}\left(\int_0^\pi e^{e^{it}}\ dt\right)\\ &=&\text{Re}\left(\int_0^\pi\sum_{k=0}^{\infty}\frac{1}{k!}\left(e^{it}\right)^k\ dt\right)\\ &=&\text{Re}\left(\int_0^\pi 1+\sum_{k=1}^{\infty}\frac{1}{k!}e^{ikt}\ dt\right)\\ &=&\text{Re}\left(\pi-0+\sum_{k=1}^{\infty}\left(\frac{1}{k!}\int_0^\pi e^{ikt}\ dt\right)\right)\\ &=&\text{Re}\left(\pi+\sum_{k=1}^{\infty}\left(\frac{1}{k!}\frac{1}{ik}e^{ikt}\ dt\right)\right)\\ &=&\text{Re}\left(\pi+\sum_{k=1}^\infty\left(\frac{1}{k!}\left(\frac{e^{ik\pi}}{ik}-\frac{e^{ik\cdot0}}{ik}\right)\right)\right)\\ &=&\text{Re}\left(\pi+\sum_{k=1}^\infty\frac{(-1)^k-1}{ik\cdot k!}\right)\\ &=&\text{Re}\left(\pi+\frac{1}{i}\sum_{k=1}^\infty\frac{(-1)^k-1}{k\cdot k!}\right)\\ &=&\text{Re}\left(\pi-i\sum_{k=1}^\infty\frac{(-1)^k-1}{k\cdot k!}\right)\\ &=&\boxed{\pi} \end{aligned}

Solution Courtesy: @Stefan Stankovic

I also did it this way.

A Former Brilliant Member - 6 years, 8 months ago

@Stefan Stankovic , I'll tag you here

Agnishom Chattopadhyay - 6 years, 8 months ago

I did it the same way as well.

Kartik Sharma - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...