Without using l'hopital's rule 1

Calculus Level 1

lim x 0 1 cos x x = ? \large \lim_{x\to0} \dfrac{1-\cos x}x = \ ?

Bonus: Solve this question without using L'Hôpital's rule .


The answer is 0.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

L = lim x 0 1 cos x x By Maclaurin series = lim x 0 1 ( 1 x 2 2 ! + x 4 4 ! x 6 6 ! + . . . ) x = lim x 0 x 2 2 ! x 4 4 ! + x 6 6 ! + . . . x = lim x 0 ( x 2 ! x 3 4 ! + x 5 6 ! + . . . ) = 0 \begin{aligned} L & = \lim_{x \to 0} \frac {1-{\color{#3D99F6}\cos x}}x & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to 0} \frac {1-{\color{#3D99F6}\left(1-\frac {x^2}{2!} +\frac {x^4}{4!}- \frac {x^6}{6!}+...\right)}}x \\ & = \lim_{x \to 0} \frac {\frac {x^2}{2!} -\frac {x^4}{4!}+ \frac {x^6}{6!}+...}x \\ & = \lim_{x \to 0} \left( \frac {x}{2!} -\frac {x^3}{4!}+ \frac {x^5}{6!}+... \right) \\ & = \boxed{0} \end{aligned}

Akeel Howell
Jul 4, 2017

lim x 0 1 cos x x = lim x 0 ( 1 cos x ) ( 1 + cos x ) x ( 1 + cos x ) = lim x 0 sin 2 x x ( 1 + cos x ) = lim x 0 sin x x sin x ( 1 + cos x ) = 1 × 0 = 0 \displaystyle \lim_{x\to0} \dfrac{1-\cos x}x \\ = \displaystyle \lim_{x\to0} \dfrac{(1-\cos x)(1+\cos x)}{x(1+\cos x)} \\ = \displaystyle \lim_{x\to0} \dfrac{\sin^2 x}{x(1+\cos x)} \\ = \displaystyle \lim_{x\to0} \dfrac{\sin x}x \cdot \dfrac{\sin x}{(1+\cos x)} \\ = 1 \times 0 = \space \boxed{0} .

Kevin Tran
Dec 4, 2016

another solution is to graph (1-cosx)/(x) and you will find that it's approaching 0 from positive and negative direction

Anirudh Sreekumar
Oct 13, 2017

lim x 0 1 cos x x = lim x 0 2 sin 2 ( x 2 ) x = lim x 0 x 2 × lim x 0 ( sin ( x 2 ) x 2 ) 2 = 0 × 1 = 0 \begin{aligned}\large \lim_{x\to0} \dfrac{1-\cos x}x &=\large \lim_{x\to0}\dfrac{2\sin^2(\dfrac{x}{2})}x\\ &=\large \lim_{x\to0}\dfrac{x}{2}\times\large \lim_{x\to0}\left(\dfrac{\sin(\dfrac{x}{2})}{\dfrac{x}{2}}\right)^2\\ &=0\times1=0\end{aligned}

Jonor Wong
Oct 14, 2017

x趋向于0时cosx趋向于1,1-cosx则无限趋近于0,在分母x无限趋近于0却不为0时分式有意义,所以L可以无限趋近于0,但严格地说不等于0

Since x x appoaches 0 0 , we can assign a value that is very near to 0 0 , then substitute and use a calculator. Let x = 0.00001 x=0.00001

lim x 0 1 cos x x = 1 cos 0.00001 0.00001 = 0 \lim_{x\to0}\dfrac{1-\cos x}x=\dfrac{1-\cos 0.00001}{0.00001}=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...