Without using l'hopital's rule 2

Calculus Level 1

lim x 0 x 2 sin x = ? \large \lim_{x\to 0} \dfrac{x^2}{\sin x} = \ ?

Bonus: Solve this question without using L'Hôpital's rule .


The answer is 0.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

L = lim x 0 x 2 sin x Divide up and down by x = lim x 0 x sin x x See note. = 0 1 = 0 \begin{aligned} L & = \lim_{x \to 0} \frac {x^2}{\sin x} & \small \color{#3D99F6} \text{Divide up and down by }x \\ & = \lim_{x \to 0} \frac {x}{\color{#3D99F6} \frac {\sin x}x} & \small \color{#3D99F6} \text{See note.} \\ & = \frac 0{\color{#3D99F6}1} = \boxed{0} \end{aligned}


Note:

lim x 0 sin x x = lim x 0 x x 3 3 ! + x 5 5 ! . . . x By Maclaurin series = lim x 0 ( 1 x 2 3 ! + x 4 5 ! . . . ) = 1 \begin{aligned} \lim_{x \to 0} \frac {\color{#3D99F6}\sin x}x & = \lim_{x \to 0} \frac {\color{#3D99F6}x-\frac {x^3}{3!}+\frac{x^5}{5!}-...}x & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to 0} \left(1-\frac {x^2}{3!}+\frac{x^4}{5!}-... \right) \\ & = \boxed{1} \end{aligned}

Your representation and colorful graphics makes solutions very attractive !

Aditya Narayan Sharma - 4 years, 6 months ago

Let x = 0.00001 x=0.00001 , then we have

0.0000 1 2 sin 0.00001 = 0 \dfrac{0.00001^2}{\sin 0.00001}=0

Note: Calculator must be in radian mode.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...