WMC 2018 Senior Problem 10

Level 2

Let a, b and c be real numbers that satisfy the following equations:

a + 1 b c = 1 3 , b + 1 a c = 1 6 , c + 1 a b = 1 2 a+\frac { 1 }{ bc } =\frac { 1 }{ 3 } ,\quad b+\frac { 1 }{ ac } =\frac { 1 }{ 6 } ,\quad c+\frac { 1 }{ ab } =\frac { 1 }{ 2 }

Find the value of c + b c + a \frac{c+b}{c+a} .

7 12 \frac { 7 }{ 12 } 5 6 \frac { 5 }{ 6 } 2 9 \frac { 2 }{ 9 } 4 5 \frac { 4 }{ 5 } 1 2 \frac { 1 }{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Oct 14, 2018

Let 1 + 1 a b c = t 1+\dfrac1{abc}=t

Then, a t = 1 3 , b t = 1 6 , c t = 1 2 at=\dfrac13,bt=\dfrac16,ct=\dfrac12

c + b c + a = c t + b t c t + a t = 4 5 \dfrac{c+b}{c+a}=\dfrac{ct+bt}{ct+at}=\dfrac45

abc+1=bc/3 abc+1=ac/6 abc+1=ab/2 So bc/3=ac/6, hence a=2b ac/6=ab/2, hence c=3b So (c+b)/(c+a)=(3b+b)/(3b+2b)=4/5

David Webb - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...