WMC 2018 Senior Problem 23

Algebra Level 2

If x = 3 + 8 x=3+\sqrt8 , find the value of x 4 + 1 x 4 x^4+\dfrac{1}{x^4} .

6939 6939 639 2 639\sqrt2 641 2 641\sqrt2 2309 2 \frac{2309}{2} 1154 1154

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 15, 2018

Given that x = 3 + 8 = 6 + 6 2 4 ( 1 ) 2 x = 3 + \sqrt 8 = \dfrac {6 + \sqrt{6^2-4(1)}}2 , implying 3 + 8 3+\sqrt 8 is a root of x 2 6 x + 1 = 0 x^2 - 6x + 1=0 . Therefore,

x 2 6 x + 1 = 0 Divide both sides by x . x 6 + 1 x = 0 x + 1 x = 6 Squaring both sides. x 2 + 2 + 1 x 2 = 36 x 2 + 1 x 2 = 34 Similarly, squaring and 2 both sides. x 4 + 1 x 4 = 3 4 2 2 = 1154 \begin{aligned} x^2 - 6x + 1 & = 0 & \small \color{#3D99F6} \text{Divide both sides by }x. \\ x - 6 + \frac 1x & = 0 \\ x + \frac 1x & = 6 & \small \color{#3D99F6} \text{Squaring both sides.} \\ x^2 + 2 + \frac 1{x^2} & = 36 \\ x^2 + \frac 1{x^2} & = 34 & \small \color{#3D99F6} \text{Similarly, squaring and }- 2\text{ both sides.} \\ \implies x^4 + \frac 1{x^4} & = 34^2 - 2 \\ & = \boxed{1154} \end{aligned}

Munem Shahriar
Oct 15, 2018

Given that x = 3 + 8 x = 3 + \sqrt 8 . So 1 x = 1 3 + 8 = 3 8 ( 3 + 8 ) ( 3 8 ) = ( 3 8 ) 3 2 ( 8 ) 2 = 3 8 \dfrac 1x = \dfrac 1{3 + \sqrt 8} = \dfrac{3 - \sqrt 8}{(3 + \sqrt 8)(3 - \sqrt 8)} = \dfrac{(3 - \sqrt 8)}{3^2 - (\sqrt 8)^2} = 3 - \sqrt 8

Now,

x + 1 x = 3 + 8 + 3 8 ( x + 1 x ) 2 = 6 2 [ Square on both sides ] x 2 + 1 x 2 + 2 = 6 2 x 2 + 1 x 2 = 34 ( x 2 + 1 x 2 ) 2 = 3 4 2 [ Square on both sides ] ( x 2 ) 2 + 1 ( x 2 ) 2 + 2 = 3 4 2 x 4 + 1 x 4 = 1156 2 x 4 + 1 x 4 = 1154 \begin{aligned} x + \dfrac 1x & = 3+ \sqrt 8 + 3 - \sqrt 8 \\ \Rightarrow \left(x + \dfrac 1x \right)^2 & = 6^2 ~~~~~[\text{Square on both sides}] \\ \Rightarrow x^2 + \dfrac 1{x^2} +2 & = 6^2 \\ \Rightarrow x^2 + \dfrac 1{x^2} & = 34 \\ \Rightarrow \left(x^2 + \dfrac 1{x^2} \right)^2 & = 34^2 ~~~~~~~ [ \text{Square on both sides}] \\ \Rightarrow (x^2)^2 + \dfrac 1{(x^2)^2} + 2 & = 34^2 \\ \Rightarrow x^4 + \dfrac 1{x^4} & = 1156 - 2 \\ \implies x^4 + \dfrac 1{x^4} & = \boxed{1154} \\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...