WMC 2018 Senior Problem 27

Level 2

Order the following from smallest to largest

( a ) 2 10 × 10 6 \left(a\right)2^{10}\times{10}^6

( b ) 2 3 × 200 × 10 6 \left(b\right)\ 2^3\times200\times{10}^6

( c ) 9 × 10 8 \left(c\right)\ 9\times{10}^8

( d ) 8 5 × 64000 \left(d\right)\ 8^5\times64000

( e ) 2 3 × 3 3 × 4 3 × 5 3 × 10 3 (e) 2^3\times3^3\times4^3\times5^3\times{10}^3

c , a , b , e , d c,a,b,e,d a , c , e , d , b a,c,e,d,b a , c , b , e , d a,c,b,e,d c , b , a , e , d c,b,a,e,d c , a , e , b , d c,a,e,b,d

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Julian Yu
Oct 20, 2018

These can be rewritten as:

a) 1 0 6 1024 10^6\cdot 1024

b) 1 0 6 1600 10^6\cdot 1600

c) 1 0 6 900 10^6\cdot 900

e) 1 0 6 1728 10^6\cdot 1728 .

So clearly, c < a < b < e c<a<b<e . We can show that e < d e<d by dividing both sides by 8 64000 8\cdot 64000 , and it can be confirmed that 3 3 5 3 < 8 4 3^3\cdot 5^3<8^4 .

X X
Oct 19, 2018

( a , b , c , d , e ) = ( 1024000000 , 1600000000 , 900000000 , 2097152000 , 1728000000 ) (a,b,c,d,e)=(1024000000,1600000000,900000000,2097152000,1728000000)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...