WMC 2018 Senior Problem 31

Level 2

Evaluate 1 + 1 1 2 + 1 2 2 + 1 + 1 2 2 + 1 3 2 + 1 + 1 3 2 + 1 4 2 + + 1 + 1 2017 2 + 1 2018 2 \sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+\cdots+\sqrt{1+\frac{1}{{2017}^2}+\frac{1}{{2018}^2}}

2017 1 2018 2017-\frac{1}{2018} 2017 1 2017 2017-\frac{1}{2017} 2018 1 2018 2018-\frac{1}{2018} 2018 1 2017 2018-\frac{1}{2017} 2018 1 2019 2018-\frac{1}{2019}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
Oct 20, 2018

1 + 1 n 2 + 1 ( n + 1 ) 2 \space\space\space\space\sqrt{1+\dfrac1{n^2}+\dfrac1{(n+1)^2}}

= n 2 ( n + 1 ) 2 + n 2 + ( n + 1 ) 2 n 2 ( n + 1 ) 2 =\sqrt{\dfrac{n^2(n+1)^2+n^2+(n+1)^2}{n^2(n+1)^2}}

= n 4 + 2 n 3 + 3 n 2 + 2 n 2 + 1 n 2 ( n + 1 ) 2 =\sqrt{\dfrac{n^4+2n^3+3n^2+2n^2+1}{n^2(n+1)^2}}

= ( n 2 + n + 1 ) 2 n 2 ( n + 1 ) 2 =\sqrt{\dfrac{(n^2+n+1)^2}{n^2(n+1)^2}}

= n 2 + n + 1 n ( n + 1 ) =\dfrac{n^2+n+1}{n(n+1)}

= 1 + 1 n ( n + 1 ) =1+\dfrac1{n(n+1)}

= 1 + 1 n 1 n + 1 =1+\dfrac1n-\dfrac1{n+1}

So, the expression becomes

( 1 + 1 1 1 2 ) + ( 1 + 1 2 1 3 ) + ( 1 + 1 3 1 4 ) + . . . ( 1 + 1 2017 1 2018 ) = 2018 1 2018 (1+\frac11-\frac12)+(1+\frac12-\frac13)+(1+\frac13-\frac14)+...(1+\frac1{2017}-\frac1{2018})=2018-\frac1{2018}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...