Let f ( x ) = x 4 + a x 3 + b x 2 + c x + d , where f ( 1 ) = f ( 3 ) = f ( − 2 ) = 1 . Also, f ( − 1 ) = 0 . Find f ( 0 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Plugging in each given value yields an equation in terms of a , b , c , d : 1 + a + b + c + d 8 1 + 2 7 a + 9 b + 3 c + d 1 6 − 8 a + 4 b − 2 c + d 1 − a + b − c + d = 1 = 1 = 1 = 0 Putting these equations into a matrix yields ⎝ ⎜ ⎜ ⎛ 1 2 7 − 8 − 1 1 9 4 1 1 3 − 2 − 1 1 1 1 1 0 − 8 0 − 1 5 − 1 ⎠ ⎟ ⎟ ⎞ RREF ⎝ ⎜ ⎜ ⎛ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 − 8 9 − 4 2 7 8 1 3 4 2 5 ⎠ ⎟ ⎟ ⎞ So f ( 0 ) = d = 4 2 5 .
I find it easier if you do this:
Let g ( x ) = f ( x ) − 1 , then g ( x ) has roots 1 , 3 , − 2 . So, g ( x ) = ( x − k ) ( x − 1 ) ( x − 3 ) ( x + 2 ) for some constant k . Substitute 0 − 1 = f ( − 1 ) − 1 = g ( − 1 ) − 1 = ⋯ ⇒ k = − 8 7 .
Problem Loading...
Note Loading...
Set Loading...
f ( 1 ) = f ( 3 ) = f ( − 2 ) = 1 tells us that f ( x ) = ( x − 1 ) ( x − 3 ) ( x + 2 ) ( x − a ) + 1 for some a . Now f ( − 1 ) = 0 gives a = − 8 7 so f ( 0 ) = 4 2 5 .