WMC 2018 Senior Problem 36

Level 2

Let x 0 x\geq0 and y 0 y\geq0 .

If 1 x 2 = 1 16 1 x y \frac{1}{x^2}=\frac{1}{16}-\frac{1}{xy} and 1 y 2 = 1 2 1 x y \frac{1}{y^2}=\frac{1}{2}-\frac{1}{xy} , find x y xy .

4 8 2 18 32

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Math Nerd 1729
Nov 26, 2018

Multiplying the two equations, we get:

1 x 2 y 2 = ( 1 16 1 x y ) ( 1 2 1 x y ) \frac { 1 }{ x^{ 2 }y^{ 2 } } =\left( \frac { 1 }{ 16 } -\frac { 1 }{ xy } \right) \left( \frac { 1 }{ 2 } -\frac { 1 }{ xy } \right)

( 1 x y ) 2 = ( 1 16 1 x y ) ( 1 2 1 x y ) \left( \frac { 1}{xy } \right) ^2=\left( \frac { 1 }{ 16 } -\frac { 1 }{ xy } \right) \left( \frac { 1 }{ 2 } -\frac { 1 }{ xy } \right)

Let u = 1 x y u=\frac { 1 }{ xy }

The result can be then rewritten as:

u 2 = ( 1 16 u ) ( 1 2 u ) u^{ 2 }=\left( \frac { 1 }{ 16 } -u \right) \left( \frac { 1 }{ 2 } -u \right)

Solving for u:

u 2 = 1 32 9 16 u + u 2 u^{ 2 }=\frac { 1 }{ 32 } -\frac { 9 }{ 16 } u+u^2

0 = 1 32 9 16 u 0=\frac { 1 }{ 32 } -\frac { 9 }{ 16 } u

0 = 1 18 u 0=1-18u

u = 1 18 u=\frac { 1 }{ 18 }

Substituting back the definition of u:

1 x y = 1 18 \frac { 1 }{ xy } =\frac { 1 }{ 18 }

Taking the reciprocal of both sides gives us our final answer:

x y = 18 \boxed { xy=18 }

X X
Oct 20, 2018

We have 16 y = x 2 y 16 x , 2 x = x y 2 2 y 16y=x^2y-16x,2x=xy^2-2y

16 ( x + y ) = x 2 y = 8 x y 2 , x = 8 y 16(x+y)=x^2y=8xy^2,x=8y

1 x 2 = 1 8 x y = 1 16 1 x y \dfrac1{x^2}=\dfrac1{8xy}=\dfrac1{16}-\dfrac1{xy}

Let 1 x y = z \dfrac1{xy}=z , then 1 8 z = 1 16 z , z = 1 18 , x y = 18 \dfrac18z=\dfrac1{16}-z,z=\dfrac1{18},xy=18

May need some parentheses in the second line. Looks like you are multiplying 16 by x and then adding y.

Math Nerd 1729 - 2 years, 7 months ago

Log in to reply

Thanks for pointing out, I've editted it.

X X - 2 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...