WMC 2018 Senior Problem 7

Geometry Level 3

A B C D ABCD is a square. A E AE and F C FC divide the square into 3 equal areas. G H = 5 GH=5 and G H F C GH \bot FC .

Find A B AB .

14 14 5 11 5\sqrt { 11 } 5 13 5\sqrt { 13 } 5 13 2 \frac { 5\sqrt { 13 } }{ 2 } 5 15 5\sqrt { 15 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 12, 2018

Let the side length of square A B C D ABCD be a a and B E = D F = b BE=DF=b . Since the area of A B E \triangle ABE is 1 3 \dfrac 13 of the square, a b 2 = a 2 3 \dfrac {ab}2 = \dfrac {a^2}3 , b = 2 3 a \implies b = \dfrac 23a .

Draw E I G H EI || GH . We note that A E F C AE || FC and hence E I = G H = 5 EI=GH=5 also that E I C \triangle EIC is similar to A B E \triangle ABE and C D F \triangle CDF . Therefore,

E I : I C : C E = A B : B E : A E Since A B E = 9 0 = 1 : 2 3 : 13 3 As 1 + ( 2 3 ) 2 = 13 3 C E = 13 3 E I = 5 13 3 Note that C E = a b = a 3 a 3 = 5 13 3 A B = a = 5 13 \begin{aligned} EI:IC:CE & = AB:BE:\color{#3D99F6}AE & \small \color{#3D99F6} \text{Since }\angle ABE = 90^\circ \\ & = 1 : \frac 23 : \color{#3D99F6}\frac {\sqrt {13}}3 & \small \color{#3D99F6} \text{As }\sqrt{1+\left(\frac 23\right)^2} = \frac {\sqrt{13}}3 \\ \implies CE & = \frac {\sqrt{13}}3 EI = \frac {5\sqrt{13}}3 & \small \color{#3D99F6} \text{Note that }CE = a-b = \frac a3 \\ \frac a3 & = \frac {5\sqrt{13}}3 \\ \implies AB & = a = \boxed{5\sqrt{13}} \end{aligned}

Jordan Cahn
Oct 11, 2018

Note that, since Area ( A B E ) = Area ( C D F ) \text{Area}(\triangle ABE) = \text{Area}(\triangle CDF) , B E = F D BE = FD and, therefore A B E C D F \triangle ABE \cong\triangle CDF . It then follows that B E A D F C \angle BEA \cong \angle DFC , which in turn implies that A E F C \overline{AE}\parallel\overline{FC} . Therefore A E C F AECF is a parallelogram and its area will be G H × A E GH\times AE .

Now, let A B = s AB=s and let B E = x BE=x . Since Area ( A B E ) = 1 3 Area ( A B C D ) \text{Area}(\triangle ABE) = \frac{1}{3}\text{Area}(ABCD) , we know that 1 2 s x = 1 3 s 2 x = 2 3 s Note: s 0 \begin{aligned} &&\frac{1}{2}sx &= \frac{1}{3} s^2 \\ \Rightarrow && x &= \frac{2}{3}s & \color{#3D99F6} \text{Note: } s\neq 0 \end{aligned}

Now, by the Pythagorean Theorem, A E = s 2 + x 2 = 13 9 s 2 = 13 s 3 AE = \sqrt{s^2 + x^2} = \sqrt{\frac{13}{9}s^2} = \frac{\sqrt{13}s}{3} . Using the fact that Area ( A B E ) = 1 3 Area ( A B C D ) \text{Area}(\triangle ABE) = \frac{1}{3}\text{Area}(ABCD) : 5 × 13 s 3 = 1 3 s 2 5 13 = s \begin{aligned} &&5\times\frac{\sqrt{13}s}{3} &= \frac{1}{3}s^2 \\ \Rightarrow && \boxed{5\sqrt{13}} &= s \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...